1/3

Spherical Base Vectors

Spherical base vectors are the "natural" base vectors of a **sphere**.

 \hat{a}_{r} points in the direction of increasing r. In other words \hat{a}_{r} points away from the origin. This is analogous to the direction we call up.

 \hat{a}_{σ} points in the direction of **increasing** θ . This is analogous to the direction we call **south**.

 \hat{a}_{ϕ} points in the direction of increasing ϕ . This is analogous to the direction we call **east**.

Ζ

â

Ľ

IMPORTANT NOTE: The directions of spherical base vectors are **dependent on position**. First you must determine **where** you are in space (using coordinate values), **then** you can define the directions of \hat{a}_r , \hat{a}_{θ} , \hat{a}_{ϕ} .

Note **Cartesian** base vectors are **special**, in that their directions are **independent** of location—they have the same directions throughout all space.

Thus, it is helpful to define spherical base vectors **in terms of** Cartesian base vectors. It can be shown that:

$\hat{a}_r \cdot \hat{a}_x = \sin \theta \cos \phi$	$oldsymbol{\hat{a}}_{ heta} \cdot oldsymbol{\hat{a}}_{ extsf{x}} =$ COS $ heta$ COS ϕ	$\hat{a}_{\!\scriptscriptstyle \phi} \cdot \hat{a}_{\!\scriptscriptstyle X} = - \mathop{{ m sin}} \phi$
$\hat{a}_r \cdot \hat{a}_y = \sin \theta \sin \phi$	$\hat{a}_{ heta}\cdot\hat{a}_{y}=\cos heta$ sin ϕ	$\hat{a}_{\!\scriptscriptstyle \phi} \cdot \hat{a}_{\!\scriptscriptstyle Y} =$ cos ϕ
$\hat{a}_r \cdot \hat{a}_z = \cos heta$	$\hat{a}_{ heta}\cdot\hat{a}_{z}=-$ sin $ heta$	$\hat{a}_{_{\!\phi}}\cdot\hat{a}_{_{\!z}}=0$

Recall that **any** vector **A** can be written as:

$$\mathbf{A} = \left(\mathbf{A} \cdot \hat{a}_{x}\right) \hat{a}_{x} + \left(\mathbf{A} \cdot \hat{a}_{y}\right) \hat{a}_{y} + \left(\mathbf{A} \cdot \hat{a}_{z}\right) \hat{a}_{z}.$$

Therefore, we can write unit vector \hat{a}_r as, for example:

$$\hat{a}_{r} = (\hat{a}_{r} \cdot \hat{a}_{x})\hat{a}_{x} + (\hat{a}_{r} \cdot \hat{a}_{y})\hat{a}_{y} + (\hat{a}_{r} \cdot \hat{a}_{z})\hat{a}_{z}$$
$$= \sin\theta\cos\phi \ \hat{a}_{x} + \sin\theta\sin\phi \ \hat{a}_{y} + \cos\theta \ \hat{a}_{z}$$

This result explicitly shows that \hat{a}_r is a function of θ and ϕ .

For **example**, at the point in space r = 7.239, $\theta = 90^{\circ}$ and $\phi = 0^{\circ}$, we find that $\hat{a}_r = \hat{a}_x$. In other words, at this point in space, the direction \hat{a}_r points in the *x*-direction.

Or, at the point in space r = 2.735, $\theta = 90^{\circ}$ and $\phi = 90^{\circ}$, we find that $\hat{a}_r = \hat{a}_y$. In other words, at this point in space, \hat{a}_r points in the *y*-direction.

Additionally, we can write \hat{a}_{θ} and \hat{a}_{ϕ} as:

$$\hat{a}_{\theta} = \left(\hat{a}_{\theta} \cdot \hat{a}_{x}\right)\hat{a}_{x} + \left(\hat{a}_{\theta} \cdot \hat{a}_{y}\right)\hat{a}_{y} + \left(\hat{a}_{\theta} \cdot \hat{a}_{z}\right)\hat{a}_{z}$$

$$\hat{a}_{\phi} = \left(\hat{a}_{\phi} \cdot \hat{a}_{x}\right)\hat{a}_{x} + \left(\hat{a}_{\phi} \cdot \hat{a}_{y}\right)\hat{a}_{y} + \left(\hat{a}_{\phi} \cdot \hat{a}_{z}\right)\hat{a}_{z}$$

Alternatively, we can write **Cartesian** base vectors in terms of spherical base vectors, i.e.,

$$oldsymbol{\hat{a}}_{x}=ig(oldsymbol{\hat{a}}_{x}\cdotoldsymbol{\hat{a}}_{r}ig)oldsymbol{\hat{a}}_{r}+ig(oldsymbol{\hat{a}}_{x}\cdotoldsymbol{\hat{a}}_{ heta}ig)oldsymbol{\hat{a}}_{ heta}+ig(oldsymbol{\hat{a}}_{x}\cdotoldsymbol{\hat{a}}_{\phi}ig)oldsymbol{\hat{a}}_{\phi}$$

$$\hat{a}_{y} = \left(\hat{a}_{y} \cdot \hat{a}_{r}\right)\hat{a}_{r} + \left(\hat{a}_{y} \cdot \hat{a}_{\theta}\right)\hat{a}_{\theta} + \left(\hat{a}_{y} \cdot \hat{a}_{\phi}\right)\hat{a}_{\phi}$$

$$\boldsymbol{\hat{a}}_{z} = \left(\boldsymbol{\hat{a}}_{z}\cdot\boldsymbol{\hat{a}}_{r}\right)\boldsymbol{\hat{a}}_{r} + \left(\boldsymbol{\hat{a}}_{z}\cdot\boldsymbol{\hat{a}}_{\theta}\right)\boldsymbol{\hat{a}}_{\theta} + \left(\boldsymbol{\hat{a}}_{z}\cdot\boldsymbol{\hat{a}}_{\phi}\right)\boldsymbol{\hat{a}}_{\phi}$$

Using the **table** on the previous page, we can insert the result of each dot product to express each base vector in terms of **spherical coordinates**!