Spherical Base Vectors

Spherical base vectors are the "natural" base vectors of a sphere.
\hat{a}_{r} points in the direction of increasing r. In other words \hat{a}_{r} points away from the origin. This is analogous to the direction we call up.
\hat{a}_{θ} points in the direction of increasing θ. This is analogous to the direction we call south.
\hat{a}_{ϕ} points in the direction of increasing ϕ. This is analogous to the direction we call east.

IMPORTANT NOTE: The directions of spherical base vectors are dependent on position. First you must determine where you are in space (using coordinate values), then you can define the directions of $\hat{a}_{r}, \hat{a}_{\theta}, \hat{a}_{\phi}$.

Note Cartesian base vectors are special, in that their directions are independent of location-they have the same directions throughout all space.

Thus, it is helpful to define spherical base vectors in terms of Cartesian base vectors. It can be shown that:
$\hat{a}_{r} \cdot \hat{a}_{x}=\sin \theta \cos \phi \quad \hat{a}_{\theta} \cdot \hat{a}_{x}=\cos \theta \cos \phi \quad \hat{a}_{\phi} \cdot \hat{a}_{x}=-\sin \phi$
$\hat{a}_{r} \cdot \hat{a}_{y}=\sin \theta \sin \phi \quad \hat{a}_{\theta} \cdot \hat{a}_{y}=\cos \theta \sin \phi \quad \hat{a}_{\phi} \cdot \hat{a}_{y}=\cos \phi$
$\hat{a}_{r} \cdot \hat{a}_{z}=\cos \theta$
$\hat{a}_{\theta} \cdot \hat{a}_{z}=-\sin \theta$
$\hat{a}_{\phi} \cdot \hat{a}_{z}=0$

Recall that any vector \mathbf{A} can be written as:

$$
\mathbf{A}=\left(\mathbf{A} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\mathbf{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\mathbf{A} \cdot \hat{a}_{z}\right) \hat{a}_{z} .
$$

Therefore, we can write unit vector \hat{a}_{r} as, for example:

$$
\begin{aligned}
\hat{a}_{r} & =\left(\hat{a}_{r} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{r} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{r} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\sin \theta \cos \phi \hat{a}_{x}+\sin \theta \sin \phi \hat{a}_{y}+\cos \theta \hat{a}_{z}
\end{aligned}
$$

This result explicitly shows that \hat{a}_{r} is a function of θ and ϕ.

For example, at the point in space $r=7.239, \theta=90^{\circ}$ and $\phi=0^{\circ}$, we find that $\hat{a}_{r}=\hat{a}_{x}$. In other words, at this point in space, the direction \hat{a}_{r} points in the x-direction.

Or, at the point in space $r=2.735, \theta=90^{\circ}$ and $\phi=90^{\circ}$, we find that $\hat{a}_{r}=\hat{a}_{y}$. In other words, at this point in space, \hat{a}_{r} points in the y-direction.

Additionally, we can write \hat{a}_{θ} and \hat{a}_{ϕ} as:

$$
\begin{aligned}
& \hat{a}_{\theta}=\left(\hat{a}_{\theta} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{\theta} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{\theta} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& \hat{a}_{\phi}=\left(\hat{a}_{\phi} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{\phi} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{\phi} \cdot \hat{a}_{z}\right) \hat{a}_{z}
\end{aligned}
$$

Alternatively, we can write Cartesian base vectors in terms of spherical base vectors, i.e.,

$$
\begin{aligned}
& \hat{a}_{x}=\left(\hat{a}_{x} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{x} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{x} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& \hat{a}_{y}=\left(\hat{a}_{y} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{y} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{y} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& \hat{a}_{z}=\left(\hat{a}_{z} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{z} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{z} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}
\end{aligned}
$$

Using the table on the previous page, we can insert the result of each dot product to express each base vector in terms of spherical coordinates!

