Spherical Coordinates

* Geographers specify a location on the Earth's surface using three scalar values: longitude, latitude, and altitude.

* Both longitude and latitude are **angular** measures, while altitude is a measure of **distance**.

* Latitude, longitude, and altitude are similar to **spherical coordinates**.

<u>Y</u>

* Spherical coordinates consist of one scalar value (r), with units of **distance**, while the other two scalar values (θ , ϕ) have **angular** units (degrees or radians).

Ζ

1. For spherical coordinates, r ($0 \le r < \infty$) expresses the **distance** of the point from the **origin** (i.e., similar to **altitude**).

2. Angle θ ($0 \le \theta \le \pi$) represents the angle formed with the *z*-axis (i.e., similar to latitude).

3. Angle ϕ ($0 \le \phi < 2\pi$) represents the rotation angle around the *z*-axis, **precisely** the same as the **cylindrical** coordinate ϕ (i.e., similar to **longitude**).

Ζ

Thus, using **spherical** coordinates, a point in space can be unambiguously defined by **one distance** and **two angles**.