The Contour C

In this class, we will limit ourselves to studying only those contours that are formed when we change the location of a point by varying **just one** coordinate parameter. In other words, the other two coordinate parameters will remain **fixed**.

Mathematically, therefore, a contour is described by:

2 equalities (e.g., $x = 2, y = -4; r = 3, \phi = \pi/4$)

AND

1 inequality (e.g., -1 < z < 5; $0 < \theta < \pi/2$)

Likewise, we will need to explicitly determine the differential displacement vector $\overline{d\ell}$ for each contour.

Recall we have studied **seven** coordinate parameters $(x, y, z, \rho, \phi, r, \theta)$. As a result, we can form **seven** different contours *C*!

Cartesian Contours

Say we move a point from P(x=1, y=2, z=-3) to P(x=1, y=2, z=3) by changing **only** the coordinate variable z from z=-3 to z = 3. In other words, the coordinate values x and y remain **constant** at x=1 and y=2.

X

P(1,2,-3)

3/11

Similarly, a line segment parallel to the x-axis (or y-axis) can be formed by changing coordinate parameter x (or y), with a resulting differential displacement vector of $\overline{d\ell} = \overline{dx} = \hat{a}_x dx$ (or $\overline{d\ell} = \overline{dy} = \hat{a}_y dy$).

The three Cartesian contours are therefore:

1. Line segment parallel to the z-axis

 $x = c_x$ $y = c_y$ $c_{z1} \le z \le c_{z2}$ $\overline{d\ell} = \hat{a}_z dz$

2. Line segment parallel to the y-axis $x = c_x$ $c_{y1} \le y \le c_{y2}$ $z = c_z$ $\overline{d\ell} = \hat{a}_y \ dy$

3. Line segment parallel to the x-axis $c_{x1} \le x \le c_{x2}$ $y = c_y$ $z = c_z$ $\overline{d\ell} = \hat{a}_x dx$

Cylindrical Contours

Say we move a point from $P(\rho=1, \phi=45^{\circ}, z=2)$ to $P(\rho=3, \phi=45^{\circ}, z=2)$ by changing **only** the coordinate variable ρ from $\rho=1$ to $\rho=3$. In other words, the coordinate values ϕ and z remain **constant** at $\phi = 45^{\circ}$ and z=2.

We form a contour that is a line segment, parallel to the x-y plane (i.e., perpendicular to the z-axis).

Note that **every** point along this segment has coordinate values $\phi = 45^{\circ}$ and z = 2. As we move along the contour, the **only** coordinate value that changes is ρ .

X

Therefore, the differential directed distance associated with a

change in position from ρ to $\rho + d\rho$, is $\overline{d\ell} = \overline{d\rho} = \hat{a}_{\rho} d\rho$. Ζ P(1,45°,2) P(3,45°,2) Alternatively, say we move a point from $P(\rho=3, \phi=0, z=2)$ to $P(\rho = 3, \phi = 90^{\circ}, z = 2)$ by changing **only** the coordinate variable ϕ from $\phi=0$ to $\phi=90^{\circ}$. In other words, the coordinate values ρ and z remain constant at ρ = 3 and z = 2. We form a contour that is a circular arc, parallel to the x-yplane. Z P(3,90°,2) P(3,0,2)Y Jim Stiles The Univ. of Kansas Dept. of EECS **Note:** if we move from $\phi = 0$ to $\phi = 360^{\circ}$, a complete **circle** is formed around the *z*-axis.

Every point along the arc has coordinate values $\rho = 3$ and z = 2. As we move along the contour, the **only** coordinate value that changes is ϕ .

Therefore, the **differential** directed distance associated with a change in position from ϕ to $\phi + d\phi$, is:

$$\overline{d\ell} = \overline{d\phi} = \hat{a}_{\phi} \rho d\phi.$$

Finally, changing coordinate z generates the **third** cylindrical contour—but we **already** did that in Cartesian coordinates! The result is **again** a line segment parallel to the z-axis.

The three cylindrical contours are therefore described as:

Spherical Contours

Say we move a point from $P(r = 0, \theta = 60^{\circ}, \phi = 45^{\circ})$ to $P(r = 3, \theta = 60^{\circ}, \phi = 45^{\circ})$ by changing **only** the coordinate variable *r* from *r=0* to *r* = 3. In other words, the coordinate values θ and ϕ remain **constant** at $\theta = 60^{\circ}$ and $\phi = 45^{\circ}$.

We form a contour that is a **line segment**, emerging from the **origin**.

С

P(3,60°,45°)

Z

Every point along the line segment has coordinate values $\theta = 60^{\circ}$ and $\phi = 45^{\circ}$. As we move along the contour, the **only** coordinate value that changes is *r*.

Therefore, the **differential** directed distance associated with a change in position from r to r+dr, is $\overline{d\ell} = \overline{dr} = \hat{a}_r dr$.

Z

Alternatively, say we move a point from $P(r=3, \theta = 0, \phi = 45^{\circ})$ to $P(r=3, \theta = 90^{\circ}, \phi = 45^{\circ})$ by changing **only** the coordinate variable θ from $\theta = 0$ to $\theta = 90^{\circ}$. In other words, the coordinate values θ and ϕ remain **constant** at $\theta = 60^{\circ}$ and $\phi = 45^{\circ}$.

We form a **circular arc**, whose plane includes the z-axis.

Every point along the arc has coordinate values r = 3 and $\phi = 45^{\circ}$. As we move along the contour, the **only** coordinate value that changes is θ .

Therefore, the **differential** directed distance associated with a change in position from θ to $\theta + d\theta$, is $\overline{d\ell} = \overline{d\theta} = \hat{a}_{\theta} r d\theta$.

Finally, we could fix coordinates r and θ and vary coordinate ϕ only—but we **already** did this in cylindrical coordinates! We **again** find that a **circular arc** is generated, an arc that is parallel to the x-y plane.

The three spherical contours are therefore:

