The Contour C

In this class, we will limit ourselves to studying only those contours that are formed when we change the location of a point by varying just one coordinate parameter. In other words, the other two coordinate parameters will remain fixed.

Mathematically, therefore, a contour is described by:
2 equalities (e.g., $x=2, y=-4 ; r=3, \phi=\pi / 4$)
AND
1 inequality (e.g., $-1<z<5 ; 0<\theta<\pi / 2$)
Likewise, we will need to explicitly determine the differential displacement vector $\overline{d \ell}$ for each contour.

Recall we have studied seven coordinate parameters ($x, y, z, \rho, \phi, r, \theta$). As a result, we can form seven different contours \subset !

Cartesian Contours

Say we move a point from $P(x=1, y=2, z=-3)$ to $P(x=1, y=2, z$ $=3$) by changing only the coordinate variable z from $z=-3$ to z $=3$. In other words, the coordinate values x and y remain constant at $x=1$ and $y=2$.

We form a contour that is a line segment, parallel to the z axis!

Note that every point along this segment has coordinate values $x=1$ and $y=2$. As we move along the contour, the only coordinate value that changes is z.

Therefore, the differential directed distance associated with a change in position from z to $z+d z$, is $\overline{d \ell}=\overline{d z}=\hat{a}_{z} d z$.

Similarly, a line segment parallel to the x-axis (or y-axis) can be formed by changing coordinate parameter x (or y), with a resulting differential displacement vector of $\overline{d \ell}=\overline{d x}=\hat{a}_{x} d x$ (or $\overline{d \ell}=\overline{d y}=\hat{a}_{y} d y$).

The three Cartesian contours are therefore:

1. Line segment parallel to the z-axis

$$
\begin{gathered}
x=c_{x} \quad y=c_{y} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{d \ell}=\hat{a}_{z} d z
\end{gathered}
$$

2. Line segment parallel to the y-axis

$$
\begin{gathered}
x=c_{x} \quad c_{y 1} \leq y \leq c_{y 2} \quad z=c_{z} \\
\overline{d \ell}=\hat{a}_{y} d y
\end{gathered}
$$

3. Line segment parallel to the x-axis

$$
\begin{gathered}
c_{x 1} \leq x \leq c_{x 2} \quad y=c_{y} \quad z=c_{z} \\
\overline{d \ell}=\hat{a}_{x} d x
\end{gathered}
$$

Cylindrical Contours

Say we move a point from $\mathrm{P}\left(\rho=1, \phi=45^{\circ}, z=2\right)$ to $\mathrm{P}(\rho=3$, $\phi=45^{\circ}, z=2$) by changing only the coordinate variable ρ from $\rho=1$ to $\rho=3$. In other words, the coordinate values ϕ and z remain constant at $\phi=45^{\circ}$ and $z=2$.

We form a contour that is a line segment, parallel to the $x-y$ plane (i.e., perpendicular to the z-axis).

Note that every point along this segment has coordinate values $\phi=45^{\circ}$ and $z=2$. As we move along the contour, the only coordinate value that changes is ρ.

Therefore, the differential directed distance associated with a change in position from ρ to $\rho+d \rho$, is $\overline{d \ell}=\overline{d \rho}=\hat{a}_{\rho} d \rho$.

Alternatively, say we move a point from $\mathrm{P}(\rho=3, \phi=0, z=2)$ to $\mathrm{P}\left(\rho=3, \phi=90^{\circ}, z=2\right)$ by changing only the coordinate variable ϕ from $\phi=0$ to $\phi=90^{\circ}$. In other words, the coordinate values ρ and z remain constant at $\rho=3$ and $z=2$.

We form a contour that is a circular arc, parallel to the $x-y$ plane.

Note: if we move from $\phi=0$ to $\phi=360^{\circ}$, a complete circle is formed around the z-axis.

Every point along the arc has coordinate values $\rho=3$ and $z=2$. As we move along the contour, the only coordinate value that changes is ϕ.

Therefore, the differential directed distance associated with a change in position from ϕ to $\phi+d \phi$, is:

$$
\overline{d \ell}=\overline{d \phi}=\hat{a}_{\phi} \rho d \phi .
$$

Finally, changing coordinate z generates the third cylindrical contour-but we already did that in Cartesian coordinates! The result is again a line segment parallel to the z-axis.

The three cylindrical contours are therefore described as:

1. Line segment parallel to the z-axis.

$$
\begin{aligned}
\rho=c_{\rho} \quad \phi & =c_{\phi} \quad c_{z 1} \leq z \leq c_{z 2} \\
\overline{d \ell} & =\hat{a}_{z} d z
\end{aligned}
$$

2. Circular arc parallel to the x-y plane.

$$
\begin{gathered}
\rho=c_{\rho} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \quad z=c_{z} \\
\\
\overline{d \ell}=\hat{a}_{\phi} \rho d \phi
\end{gathered}
$$

3. Line segment parallel to the $x-y$ plane.

$$
\begin{gathered}
c_{\rho 1} \leq \rho \leq c_{\rho 2} \quad \phi=c_{\phi} \quad z=c_{z} \\
\overline{d \ell}=\hat{a}_{\rho} d \rho
\end{gathered}
$$

Spherical Contours

Say we move a point from $P\left(r=0, \theta=60^{\circ}, \phi=45^{\circ}\right)$ to $P(r=3$, $\theta=60^{\circ}, \phi=45^{\circ}$) by changing only the coordinate variable r from $r=0$ to $r=3$. In other words, the coordinate values θ and ϕ remain constant at $\theta=60^{\circ}$ and $\phi=45^{\circ}$.

We form a contour that is a line segment, emerging from the origin.

Every point along the line segment has coordinate values $\theta=60^{\circ}$ and $\phi=45^{\circ}$. As we move along the contour, the only coordinate value that changes is r.

Therefore, the differential directed distance associated with a change in position from r to $r+d r$, is $\overline{d \ell}=\overline{d r}=\hat{a}_{r} d r$.

Alternatively, say we move a point from $\mathrm{P}\left(r=3, \theta=0, \phi=45^{\circ}\right)$ to $\mathrm{P}\left(r=3, \theta=90^{\circ}, \phi=45^{\circ}\right)$ by changing only the coordinate variable θ from $\theta=0$ to $\theta=90^{\circ}$. In other words, the coordinate values θ and ϕ remain constant at $\theta=60^{\circ}$ and $\phi=45^{\circ}$.

We form a circular arc, whose plane includes the z-axis.

Every point along the arc has coordinate values $r=3$ and $\phi=45^{\circ}$. As we move along the contour, the only coordinate value that changes is θ.

Therefore, the differential directed distance associated with a change in position from θ to $\theta+d \theta$, is $\bar{d}=\bar{d} \theta=\hat{a}_{\theta} r d \theta$.

Finally, we could fix coordinates r and θ and vary coordinate ϕ only-but we already did this in cylindrical coordinates! We again find that a circular arc is generated, an arc that is parallel to the $x-y$ plane.

The three spherical contours are therefore:

1. A circular arc parallel to the $x-y$ plane.

$$
\begin{gathered}
r=c_{r} \quad \theta=c_{\theta} \quad c_{\phi 1} \leq \phi \leq c_{\phi 2} \\
\overline{d \ell}=\hat{a}_{\phi} r \sin \theta d \phi
\end{gathered}
$$

2. A circular arc in a plane that includes the z-axis.

$$
\begin{gathered}
r=c_{r} \quad c_{\theta 1} \leq \theta \leq c_{\theta 2} \quad \phi=c_{\phi} \\
\overline{d \ell}=\hat{a}_{\theta} r d \theta
\end{gathered}
$$

3. A line segment directed toward the origin.

$$
\begin{gathered}
c_{r 1} \leq r \leq c_{r 2} \quad \theta=c_{\theta} \quad \phi=c_{\phi} \\
\overline{d \ell}=\hat{a}_{r} \quad d r
\end{gathered}
$$

