<u>The Current I</u> <u>through Surface S</u>

Given that we know volume current density $\mathbf{J}(\bar{r})$ throughout some volume, we can find the **total current** through **any** arbitrary **surface S** as:

$$I = \iint_{S} \mathbf{J}(\overline{r_{s}}) \cdot \overline{ds} \qquad [Amps]$$

This integral is in the form of the **surface integral** we studied in Section 2-5.

Note the integrand has units of current (amps):

$$\mathbf{J}(\overline{r_s}) \cdot \overline{ds} = J_n(\overline{r_s}) \left| \overline{ds} \right| \qquad \left[\left(\frac{Amps}{m^2} \right) (m^2) = Amps \right]$$

Physically, the value $\Delta I = \mathbf{J}(\overline{r}) \cdot \overline{ds}$ is the current flowing **through** the tiny differential surface Δs , located at point \overline{r} on surface S. $\mathbf{J}(\overline{r}) \mathbf{r} \hat{a}_n$

 ΔS

* Therefore if we **add** up (i.e., integrate) the current flowing through **each** and every differential surface element Δs that makes up surface *S*, we determine the **total** current *I* flowing **through** surface *S*.

* Note the sign of current I is determined by the direction of differential surface vector \overline{ds} . For example, if I is positive, then the current is flowing through the surface in the direction of \overline{ds} .

* So, consider the case where $J(\overline{r})$ describes current that is flowing **tangential** to **every point** on surface S. In other words, the current density has no **normal** component on the surface S!

ds

As a result, we find that $\mathbf{J}(\overline{r}) \cdot \overline{ds} = 0$ at every point on the surface, and therefore the surface integral results in I = 0.

J(r

This of course is **physically** the correct answer! Current is flowing **along** the surface, but none is flowing **through** it.

S

To get a **non-zero** amount of total current, the current density must have a **normal** component at **some** points on the surface.

 $\mathbf{J}(\bar{\mathbf{r}})$

ds

For the case above, $I \neq 0$.

Q: We know that if $\mathbf{J}(\overline{\mathbf{r}}) \cdot \overline{ds} = 0$ at all points on a surface, then the current flowing through the surface is zero (I=0).

Is the converse true? That is, if the total current through a surface is zero, does that mean that the current density is tangential to the surface at all points?

A:

S