The Differential

Displacement Vector for Coordinate Systems

Let's determine the differential displacement vectors for each coordinate of the Cartesian, cylindrical and spherical coordinate systems!

Cartesian

This is easy!

$$
\begin{aligned}
\overline{d x} & =\frac{d \bar{r}}{d x} d x=\left[\left(\frac{d x}{d x}\right) \hat{a}_{x}+\left(\frac{d y}{d x}\right) \hat{a}_{y}+\left(\frac{d z}{d x}\right) \hat{a}_{z}\right] d x \\
& =\hat{a}_{x} d x \\
\overline{d y} & =\frac{d \bar{r}}{d y} d y=\left[\left(\frac{d x}{d y}\right) \hat{a}_{x}+\left(\frac{d y}{d y}\right) \hat{a}_{y}+\left(\frac{d z}{d y}\right) \hat{a}_{z}\right] d y \\
& =\hat{a}_{y} d y \\
\overline{d z} & =\frac{d \bar{r}}{d z} d z=\left[\left(\frac{d x}{d z}\right) \hat{a}_{x}+\left(\frac{d y}{d z}\right) \hat{a}_{y}+\left(\frac{d z}{d z}\right) \hat{a}_{z}\right] d z \\
& =\hat{a}_{z} d z
\end{aligned}
$$

Cylindrical

Likewise, recall from the last handout that:

$$
\overline{d \rho}=\hat{a}_{\rho} d \rho
$$

Maria, look! I'm starting to see a trend!
$\overline{d x}=\frac{d \bar{r}}{d x} d x=\hat{a}_{x} d x$
$\overline{d y}=\frac{d \bar{r}}{d y} d y=\hat{a}_{y} d y$
$\overline{d z}=\frac{d \bar{r}}{d z} d z=\hat{a}_{z} d z$
$\overline{d \rho}=\frac{d \bar{r}}{d \rho} d \rho=\hat{a}_{\rho} d \rho$

Q: It seems very apparent that:

$\overline{d \ell}=\hat{a}_{\ell} d \ell$
for all coordinates ℓ; right?

A: NO!! Do not make this mistake! For example, consider $\overline{d \phi}$:

Q: No!! $\overline{d \phi}=\hat{a}_{\phi} \rho d \phi ?!?$
How did the coordinate ρ get in there?

$$
\begin{aligned}
\overline{d \phi} & =\frac{d \bar{r}}{d \phi} d \phi \\
& =\left(\frac{d x}{d \phi} \hat{a}_{x}+\frac{d y}{d \phi} \hat{a}_{y}+\frac{d z}{d \phi} \hat{a}_{z}\right) d \phi \\
\Rightarrow & =\left(\frac{d \rho \cos \phi}{d \phi} \hat{a}_{x}+\frac{d \rho \sin \phi}{d \phi} \hat{a}_{y}+\frac{d z}{d \phi} \hat{a}_{z}\right) d \phi \\
& =\left(-\rho \sin \phi \hat{a}_{x}+\rho \cos \phi \hat{a}_{y}\right) d \phi \\
& =\left(-\sin \phi \hat{a}_{x}+\cos \phi \hat{a}_{y}\right) \rho d \phi=\hat{a}_{\phi} \rho d \phi
\end{aligned}
$$

The scalar differential value $\rho d \phi$ makes sense! The differential displacement vector is a directed distance, thus the units of its magnitude must be distance (e.g., meters, feet).
The differential value $d \phi$ has units of radians, but the differential value $\rho d \phi$ does have units of distance.

The differential displacement vectors for the cylindrical coordinate system is therefore:

$$
\begin{aligned}
& \overline{d \rho}=\frac{d \bar{r}}{d \rho} d \rho=\hat{a}_{p} d \rho \\
& \overline{d \phi}=\frac{d \bar{r}}{d \phi} d \phi=\hat{a}_{\phi} \rho d \phi \\
& \overline{d z}=\frac{d \bar{r}}{d z} d z=\hat{a}_{z} d z
\end{aligned}
$$

Likewise, for the spherical coordinate system, we find that:

$$
\begin{aligned}
& \overline{d r}=\frac{d \bar{r}}{d r} d r=\hat{a}_{r} d r \\
& \overline{d \theta}=\frac{d \bar{r}}{d \theta} d \theta=\hat{a}_{\theta} r d \theta \\
& \overline{d \phi}=\frac{d \bar{r}}{d \phi} d \phi=\hat{a}_{\phi} r \sin \theta d \phi
\end{aligned}
$$

