The Differential
Displacement Vector for

Coordinate Systems

Let's determine the differential displacement vectors for each
coordinate of the Cartesian, cylindrical and spherical coordinate
systems!

Cartesian
This is easy!
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Cylindrical

Likewise, recall from the last handout that:
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‘ Maria, look! I'm starting to see a trend!
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A: NOIl Do not make this mistake! For example, consider d¢:
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The scalar differential value p d¢ makes sense! The
differential displacement vector is a directed distance, thus
the units of its magnitude must be distance (e.g., meters, feet).
The differential value dp has units of radians, but the
differential value p d¢ does have units of distance.

The differential displacement vectors for the cylindrical
coordinate system is therefore:
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Likewise, for the spherical coordinate system, we find that:
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