<u>The Differential Surface</u> <u>Vector for</u>

Coordinate Systems

Given that $\overline{ds} = \overline{d\ell} \times \overline{dm}$, we can determine the differential surface vectors for each of the **three** coordinate systems.

 $\overline{ds_{\rho}} = \overline{d\phi} \times \overline{dz} = \hat{a}_{\rho} \rho d\phi dz$ $\overline{ds_{\phi}} = \overline{dz} \times \overline{dp} = \hat{a}_{\phi} d\rho dz$ $\overline{ds_{\tau}} = \overline{d\rho} \times \overline{d\phi} = \hat{a}_{\tau} \rho d\rho d\phi$

We shall find that $\overline{ds_{\rho}}$ describes a small patch of area on the surface of a **cylinder**, $\overline{ds_{\phi}}$ describes a small patch of area on the surface of a **half-plane**, and $\overline{ds_z}$ again describes a small patch of area on the surface of a flat **plane**.

<u>Spherical</u>

$$\frac{ds_r}{ds_{\theta}} = \overline{d\theta} \times \overline{d\phi} = \hat{a}_r r^2 \sin\theta d\theta d\phi$$

$$\frac{ds_{\theta}}{ds_{\theta}} = \overline{d\phi} \times \overline{dr} = \hat{a}_{\theta} r \sin\theta dr d\phi$$

$$\frac{ds_{\theta}}{ds_{\phi}} = \overline{dr} \times \overline{d\theta} = \hat{a}_{\phi} r dr d\theta$$

We shall find that $\overline{ds_r}$ describes a small patch of area on the surface of a **sphere**, $\overline{ds_{\theta}}$ describes a small patch of area on the surface of a **cone**, and $\overline{ds_{\phi}}$ again describes a small patch of area on the surface of a **half plane**.