The Differential Volume

Element

Consider a rectangular cube, whose three sides can be defined by three directed distances, say A, B, and C.

It is evident that the lengths of each side of the rectangular cube are $|\boldsymbol{A}|,|\mathbf{B}|$, and $|\boldsymbol{C}|$, such that the volume of this rectangular cube can be expressed as:

$$
V=|\mathbf{A}||\mathbf{B}||\boldsymbol{C}|
$$

Consider now what happens if we take the triple product of these three vectors:

$$
\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}=\mathbf{A} \cdot \hat{\boldsymbol{a}}_{n}|\mathbf{B} \| \mathbf{C}| \sin \theta_{B C}
$$

However, we note that $\sin \theta_{B C}=\sin 90^{\circ}=1.0$, and that $\hat{a}_{n}=\hat{a}_{A}$ (i.e., vector $B \times C$ points in the same direction as vector $A!$).

Using the fact that $\boldsymbol{A}=|\boldsymbol{A}| \hat{\boldsymbol{a}}_{A}$, we then find the result:

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} \times \boldsymbol{C} & =\boldsymbol{A} \cdot \hat{\boldsymbol{a}}_{n}|\mathbf{B} \| \boldsymbol{C}| \sin \theta_{B C} \\
& =\boldsymbol{A} \cdot \hat{\boldsymbol{a}}_{A}|\mathbf{B} \| \boldsymbol{C}| \\
& =|\boldsymbol{A}| \hat{\boldsymbol{a}}_{A} \cdot \hat{\boldsymbol{a}}_{A}|\mathbf{B} \| \boldsymbol{C}| \\
& =|\boldsymbol{A}||\mathbf{B}| \boldsymbol{C} \mid
\end{aligned}
$$

Look what this means, the volume of a cube can be expressed in terms of the triple product!

$$
\boldsymbol{V}=\mathbf{A} \cdot \mathbf{B} \times \boldsymbol{C}=|\mathbf{A}||\mathbf{B} \| \boldsymbol{C}|
$$

Consider now a rectangular volume formed by three orthogonal line vectors (e.g., $\overline{d x}, \overline{d y}, \overline{d z}$ or $\overline{d \rho}, \overline{d \phi}, \overline{d z}$).

The result is a differential volume, given as:

$$
d v=\overline{d \ell} \cdot \overline{d m} \times \overline{d n}
$$

For example, for the Cartesian coordinate system:

$$
\begin{aligned}
d v & =\overline{d x} \cdot \overline{d y} \times \overline{d z} \\
& =d x d y d z
\end{aligned}
$$

and for the cylindrical coordinate system:

$$
\begin{aligned}
d v & =\overline{d \rho} \cdot \overline{d \phi} \times \overline{d z} \\
& =\rho d \rho d \phi d z
\end{aligned}
$$

and also for the spherical coordinate system:

$$
\begin{aligned}
d v & =\overline{d r} \cdot \overline{d \theta} \times \overline{d \phi} \\
& =r^{2} \sin \theta d r d \phi d \theta
\end{aligned}
$$

