The Dipole Moment

Note that the dipole solutions:

$$
\mathrm{E}(\overline{\mathrm{r}})=\frac{Q d}{4 \pi \varepsilon_{0}} \frac{1}{r^{3}}\left[2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right]
$$

provide the fields produced by an electric dipole that is:

1. Centered at the origin.
2. Aligned with the z-axis.

Q: Well isn't that just grand. I suppose these equations are thus completely useless if the dipole is not centered at the origin and/or is not aligned with the z-axis!*!@!

A: That is indeed correct! The expressions above are only valid for a dipole centered at the origin and aligned with the z axis.

To determine the fields produced by a more general case (ie., arbitrary location and alignment), we first need to define a new quantity p, called the dipole moment:

$$
p=Q d
$$

Note the dipole moment is a vector quantity, as the d is a vector quantity.

Q: But what the heck is vector d ??

A: Vector d is a directed distance that extends from the location of the negative charge, to the location of the positive charge. This directed distance vector d thus describes the distance between the dipole charges (vector magnitude), as well as the orientation of the charges (vector direction).

Therefore $\mathbf{d}=|\mathbf{d}| \hat{a}_{d}$, where:
$|d|=$ distance d between charges and

$$
\hat{a}_{d}=\text { the orientation of the dipole }
$$

Note if the dipole is aligned with the z-axis, we find that $\mathbf{d}=d \hat{a}_{z}$. Thus, since $\hat{a}_{z} \cdot \hat{a}_{r}=\cos \theta$, we can write the expression:

$$
\begin{aligned}
Q d \cos \theta & =Q d \hat{a}_{z} \cdot \hat{a}_{r} \\
& =Q \mathbf{d} \cdot \hat{a}_{r} \\
& =\mathbf{p} \cdot \hat{a}_{r}
\end{aligned}
$$

Therefore, the electric potential field created by a dipole centered at the origin and aligned with the z-axis can be rewritten in terms of its dipole moment p :

$$
\begin{aligned}
V(\bar{r}) & =\frac{Q d}{4 \pi \varepsilon_{0}} \frac{\cos \theta}{r^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{a}_{r}}{r^{2}}
\end{aligned}
$$

It turns out that, not only is this representation valid for a dipole aligned with the z-axis (e.g., $d=d^{\prime} a_{z}$), it is valid for electric dipoles located at the origin, and oriented in any direction!

Although the expression above is valid for any and all dipole moments p, it is valid only for dipoles located at the origin (i.e., $\vec{r}=0$).

Q: Swell. But you have

 neglected one significant detail-what are the fields produced by a dipole when it is NOT located at the origin?A: Finding the solution for this problem is our next task!
Note the electric dipole does not "know" where the origin is, or if it is located there. As far as the dipole is concerned, we do not move it from the origin, but in fact move the origin from it!

In other words, the fields produced by an electric dipole are independent of its location or orientation-it is the mathematics expressing these fields that get modified when we change our origin and coordinate system!

If:

Then:

p

Thus, we simply need to translate the previous field (dipole at the origin) solution by the same distance and direction that we move the dipole from the origin.

Just as with charge, the location of the dipole (center) is denoted by position vector \vec{r}.

Note if the dipole is located at the origin, the position vector \bar{r} extends from the dipole the location where we evaluate the electric field.

However, if the dipole is not located at the origin, this vector extending from the dipole to the electric field is instead $\bar{r}-\bar{r}$. Thus, to translate the solution of the dipole at the origin to a new location, we replace vector \bar{r} with vector $\bar{r}-\bar{r}$, i.e.:

$$
\left.\begin{array}{cc}
r=|\bar{r}| & \text { becomes } \\
\hat{a}_{r}=\frac{\bar{r}}{|\bar{r}|} & \text { becomes }
\end{array} \hat{a}_{R}=\frac{\overline{\mathbf{r}}-\overrightarrow{\mathbf{r}} \mid}{|\bar{r}-\bar{r}|} \right\rvert\,
$$

Thus, a dipole of any arbitrary orientation and location produces the electric potential field:

$$
\begin{aligned}
V(\overline{\mathbf{r}}) & =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{a}_{R}}{|\overline{\mathbf{r}}-\vec{r}|^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot(\overline{\mathbf{r}}-\bar{r})}{|\overline{\mathbf{r}}-\overrightarrow{\mathbf{r}}|^{3}}
\end{aligned}
$$

