The Gradient Operator in Coordinate Systems

For the Cartesian coordinate system, the Gradient of a scalar field is expressed as:

$$
\nabla g(\bar{r})=\frac{\partial g(\bar{r})}{\partial x} \hat{a}_{x}+\frac{\partial g(\bar{r})}{\partial y} \hat{a}_{y}+\frac{\partial g(\bar{r})}{\partial z} \hat{a}_{z}
$$

Now let's consider the gradient operator in the other coordinate systems.

Q: Pfft! This is easy! The gradient operator in the spherical coordinate system is:

$$
\nabla g(\bar{r})=\frac{\partial g(\bar{r})}{\partial r} \hat{a}_{r}+\frac{\partial g(\bar{r})}{\partial \theta} \hat{a}_{\theta}+\frac{\partial g(\bar{r})}{\partial \phi} \hat{a}_{\phi}
$$

Right??
A: NO!! The above equation is not correct!
Instead, we find that for spherical coordinates, the gradient is expressed as:

$$
\nabla g(\bar{r})=\frac{\partial g(\bar{r})}{\partial r} \hat{a}_{r}+\frac{1}{r} \frac{\partial g(\bar{r})}{\partial \theta} \hat{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial g(\bar{r})}{\partial \phi} \hat{a}_{\phi}
$$

And for the cylindrical coordinate system we likewise get:

$$
\nabla g(\overline{\mathrm{r}})=\frac{\partial g(\overline{\mathrm{r}})}{\partial \rho} \hat{a}_{\rho}+\frac{1}{\rho} \frac{\partial g(\overline{\mathrm{r}})}{\partial \phi} \hat{a}_{\phi}+\frac{\partial g(\overline{\mathrm{r}})}{\partial z} \hat{a}_{z}
$$

