The Integral Definition of
Magnetic Vector Potentidl

Recall for electrostatics, we began with the definition of
electric scalar potential:

E(r)=-VV(r)
And then taking a contour integral of each side we discovered:
jE(F)w:—jW(F)w

iE V(r)-V (1)

We can perform an analogous procedure for magnetic vector
potential! Recall magnetic flux density B(7) can be written in

terms of the magnetic vector potential A(r):
B(r)=VxA(r)
Say we integrate both sides over some surface 5.

[[B(7)-ds=[[VxA(F)-ds



We can apply Stoke's theorem to write the right side as:

[[VxA(7)-ds =pA(F)-dt
S c
Therefore, we find that we can also define magnetic vector

potential in an integral form as:

where contour Cdefines the border of surface S.
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Consider now the meaning of the integral:
[[B(7)-ds
S

This integral is remarkably similar to:
[[T(7)-as
S

where:

Webers }

B(r)= tic flux densit
(7) = magnetic flux density [mefersz



and:

J (7)) = current density {Amp—e/"eﬂ
mefters

Recall that integrating the current density (in amps/m’) over
some surface S (in n), provided us the total current I flowing
through surface S:

[[T(F)-ds=1

S

Similarly, integrating the magnetic flux density (in webers/m’)
over some surface S (in m°), provided us the total magnetic
flux ® flowing through surface S:

[[B(F)-ds=a

S

where @ is defined as:

® =magnetic flux  [Webers]




Using the equations derived previously, we can directly relate
magnetic vector potential A(7) to magnetic flux as:

®©=(A(F)-di

c

where we recall that the units for magnetic vector potential are
Webers/m.

Note the similarities of the above expression to the integral
form of Ampere's Law!
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