The Integral Form of Electrostatics

We know from the static form of Maxwell’s equations that the vector field $\nabla \times \mathbf{E}(\mathbf{r})$ is zero at every point \mathbf{r} in space (i.e., $\nabla \times \mathbf{E}(\mathbf{r}) = 0$). Therefore, any surface integral involving the vector field $\nabla \times \mathbf{E}(\mathbf{r})$ will likewise be zero:

$$\int \int_{S} \nabla \times \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = 0$$

But, using Stokes' Theorem, we can also write:

$$\int \int_{S} \nabla \times \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = \oint_{C} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{l} = 0$$

Therefore, the equation:

$$\oint_{C} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{l} = 0$$

is the integral form of the equation:

$$\nabla \times \mathbf{E}(\mathbf{r}) = 0$$

Of course, both equations just indicate that the static electric field $\mathbf{E}(\mathbf{r})$ is a conservative field!
Likewise, we can take a volume integral over both sides of the electrostatic equation \(\nabla \cdot \mathbf{E}(\mathbf{r}) = \rho_v(\mathbf{r})/\varepsilon_0 \):

\[
\iiint_{V} \nabla \cdot \mathbf{E}(\mathbf{r}) \, d\mathbf{r} = \frac{1}{\varepsilon_0} \iiint_{V} \rho_v(\mathbf{r}) \, d\mathbf{r}
\]

But wait! The left side can be rewritten using the **Divergence Theorem**:

\[
\iiint_{V} \nabla \cdot \mathbf{E}(\mathbf{r}) \, d\mathbf{r} = \oiint_{S} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s}
\]

And, we know that the volume integral of the charge density is equal to the **charge enclosed** in volume \(V \):

\[
\iiint_{V} \rho_v(\mathbf{r}) \, d\mathbf{r} = Q_{\text{enc}}
\]

Therefore, we can write an equation known as **Gauss's Law**:

\[
\oiint_{S} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = \frac{Q_{\text{enc}}}{\varepsilon_0}
\]

This is the **integral form** of the equation \(\nabla \cdot \mathbf{E}(\mathbf{r}) = \rho_v(\mathbf{r})/\varepsilon_0 \).

What **Gauss's Law** says is that we can determine the total amount of charge enclosed within some volume \(V \) by simply integrating the electric field on the surface \(S \) surrounding volume \(V \).
Summarizing, the **integral form** of the electrostatic equations are:

\[
\oint_C \mathbf{E}(\mathbf{r}) \cdot d\mathbf{l} = 0 \quad \oint_S \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = \frac{Q}{\varepsilon_0}
\]

Note that these equations do **not** amend or extend what we already know about the static electric field, but are simply an **alternative** way of expressing the **point** form of the electrostatic equations:

\[
\nabla \times \mathbf{E}(\mathbf{r}) = 0 \\
\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{\rho_v(\mathbf{r})}{\varepsilon_0}
\]

We sometimes use the **point** form of the electrostatic equations, and we sometimes use the **integral** form—it all depends on which form is more applicable to the problem we are attempting to solve!