The Line Integral

This integral is alternatively known as the **contour integral**. The reason is that the line integral involves integrating the projection of a vector field onto a specified **contour** C, e.g.,

$$\int_{c} \mathbf{A}(\bar{\mathbf{r}}_{c}) \cdot \overline{d\ell}$$

Some important things to note:

* The integrand is a **scalar** function.

* The integration is over **one** dimension.

 The contour C is a line or curve through threedimensional space.

* The position vector $\overline{r_c}$ denotes only those points that lie on contour C. Therefore, the value of this integral **only** depends on the value of vector field $\mathbf{A}(\overline{r})$ at the points along this contour. **Q:** What is the differential vector $\overline{d\ell}$, and how does it relate to contour C?

A: The differential vector $\overline{d\ell}$ is the tiny **directed distance** formed when a point moves a small distance along contour C.

As a result, the differential line vector $\overline{d\ell}$ is **always tangential** to every point of the contour. In other words, the direction of $\overline{d\ell}$ always points "down" the contour.

Q: So what does the scalar integrand $\mathbf{A}(\overline{r_c}) \cdot \overline{d\ell}$ mean? What is it that we are actually integrating?

A: Essentially, the line integral integrates (i.e., "adds up") the values of a scalar component of vector field $\mathbf{A}(\bar{r})$ at each and every point along contour C. This scalar component of vector field $\mathbf{A}(\bar{r})$ is the projection of $\mathbf{A}(\bar{r}_c)$ onto the direction of the contour C. First, I must point out that the notation $A(\bar{r_c})$ is nonstandard. Typically, the vector field in the line integral is denoted simply as $A(\bar{r})$. I use the notation $A(\bar{r_c})$ to emphasize that we are integrating the values of the vector field $A(\bar{r})$ only at point that lie on contour C, and the points that lie on contour C are denoted as position vector $\bar{r_c}$.

In other words, the values of vector field $\mathbf{A}(\bar{r})$ at points that do not lie on the contour (which is just about all of them!) have no effect on the integration. The integral **only** depends on the value of the vector field as we move along contour *C*—we denote these values as $\mathbf{A}(\bar{r_c})$.

Moreover, the line integral depends on only one scalar component of $A(\overline{r_c})!$

Q: On just what component of $\mathbf{A}(\overline{r_c})$ does the integral depend?

A: Look at the integrand $\mathbf{A}(\overline{r_c}) \cdot \overline{d\ell}$ —we see it involves the dot product! Thus, we find that the scalar integrand is simply the scalar projection of $\mathbf{A}(\overline{r_c})$ onto the differential vector $\overline{d\ell}$. As a result, the integrand depends only the component of $\mathbf{A}(\overline{r_c})$ that lies in the direction of $\overline{d\ell}$ —and $\overline{d\ell}$ always points in the direction of the contour C! To help see this, first note that $\mathbf{A}(\overline{r_c})$, the value of the vector field along the contour, can be written in terms of a vector component **tangential** to the contour (i.e, $\mathcal{A}_{\ell}(\overline{r_c}) \hat{a}_{\ell}$), and a vector component that is **normal** (i.e., orthogonal) to the contour (i.e, $\mathcal{A}_{n}(\overline{r_c}) \hat{a}_{n}$):

We likewise note that the differential line vector $\overline{d\ell}$, like **any** and all vectors, can be written in terms of its magnitude ($|d\ell|$) and direction (\hat{a}_{ℓ}) as:

$$\overline{d\ell} = \hat{a}_{\ell} | d\ell$$

For example, for $\overline{d\phi} = \rho d\phi \hat{a}_{\phi}$, we can say $|d\ell| = \rho d\phi$ and

 $\hat{a}_{\ell} = \hat{a}_{\phi}$.

Although C represents any contour, no matter how complex or convoluted, we will study only basic contours. In other words, $\overline{d\ell}$ will correspond to one of the differential line vectors we have previously determined for Cartesian, cylindrical, and spherical coordinate systems.