The Line Integral

This integral is alternatively known as the contour integral. The reason is that the line integral involves integrating the projection of a vector field onto a specified contour C, e.g.,

$$
\int_{c} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}
$$

Some important things to note:

* The integrand is a scalar function.
* The integration is over one dimension.
* The contour C is a line or curve through threedimensional space.
* The position vector \bar{r}_{c} denotes only those points that lie on contour C. Therefore, the value of this integral only depends on the value of vector field $A(\bar{r})$ at the points along this contour.

Q: What is the differential vector $\overline{d \ell}$, and how does it relate to contour C?

A: The differential vector $\overline{d \ell}$ is the tiny directed distance formed when a point moves a small distance along contour C.

As a result, the differential line vector $\overline{d \ell}$ is always tangential to every point of the contour. In other words, the direction of $\overline{d \ell}$ always points "down" the contour.

Q: So what does the scalar integrand $\mathbf{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}$ mean?
What is it that we are actually integrating?
A: Essentially, the line integral integrates (i.e., "adds up") the values of a scalar component of vector field $\mathbf{A}(\bar{r})$ at each and every point along contour C. This scalar component of vector field $\boldsymbol{A}(\bar{r})$ is the projection of $\boldsymbol{A}\left(\bar{r}_{c}\right)$ onto the direction of the contour C.

First, I must point out that the notation $\boldsymbol{A}\left(\bar{r}_{c}\right)$ is nonstandard. Typically, the vector field in the line integral is denoted simply as $\boldsymbol{A}(\bar{r})$. I use the notation $\boldsymbol{A}\left(\bar{r}_{c}\right)$ to emphasize that we are integrating the values of the vector field $\boldsymbol{A}(\bar{r})$ only at point that lie on contour C, and the points that lie on contour C are denoted as position vector \bar{r}_{c}.

In other words, the values of vector field $\boldsymbol{A}(\bar{r})$ at points that do not lie on the contour (which is just about all of them!) have no effect on the integration. The integral only depends on the value of the vector field as we move along contour C-we denote these values as $\boldsymbol{A}\left(\bar{r}_{c}\right)$.

Moreover, the line integral depends on only one scalar component of $\boldsymbol{A}\left(\bar{r}_{c}\right)$!

Q: On just what component of $\mathbf{A}\left(\bar{r}_{c}\right)$ does the integral depend?

A: Look at the integrand $\boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}$-we see it involves the dot product! Thus, we find that the scalar integrand is simply the scalar projection of $\boldsymbol{A}\left(\bar{r}_{c}\right)$ onto the differential vector $\bar{d} \ell$. As a result, the integrand depends only the component of $\mathbf{A}\left(\bar{r}_{c}\right)$ that lies in the direction of $\overline{d \ell}$-and $\overline{d l}$ always points in the direction of the contour C !

To help see this, first note that $\boldsymbol{A}\left(\bar{r}_{c}\right)$, the value of the vector field along the contour, can be written in terms of a vector component tangential to the contour (i.e, $A_{l}\left(\bar{r}_{c}\right) \hat{a}_{l}$), and a vector component that is normal (ie., orthogonal) to the contour (i.e, $\left.A_{n}\left(\bar{r}_{c}\right) \hat{a}_{n}\right):$

$$
\mathrm{A}\left(\bar{r}_{c}\right)=A_{l}\left(\bar{r}_{c}\right) \hat{a}_{\ell}+A_{n}\left(\overline{r_{c}}\right) \hat{a}_{n}
$$

We likewise note that the differential line vector $\bar{d} \ell$, like any and all vectors, can be written in terms of its magnitude (|db|) and direction (\hat{a}_{ℓ}) as:

$$
\overline{d \ell}=\hat{a}_{\ell}|d \ell|
$$

For example, for $\overline{d \phi}=\rho d \phi \hat{a}_{\phi}$, we can say $|d \ell|=\rho d \phi$ and

$$
\hat{a}_{\ell}=\hat{a}_{\phi} .
$$

As a result we can write:

$$
\begin{aligned}
\int_{c} A\left(\bar{r}_{c}\right) \cdot \overline{d \ell} & =\int_{c}\left[A_{l}(\bar{r}) \hat{a}_{\ell}+A_{n}(\bar{r}) \hat{a}_{n}\right] \cdot \overline{d \ell} \\
& =\int_{c}\left[A_{\ell}(\bar{r}) \hat{a}_{\ell}+A_{n}(\bar{r}) \hat{a}_{n}\right] \cdot \hat{a}_{\ell}|d \ell| \\
& =\int_{c}\left[A_{\ell}(\bar{r}) \hat{a}_{\ell} \cdot \hat{a}_{\ell}+A_{n}(\bar{r}) \hat{a}_{n} \cdot \hat{a}_{\ell}\right]|d \ell|
\end{aligned}
$$

$$
=\int_{C} A_{\ell}(\bar{r})|d \ell|
$$

In other words, the line integral is simply an integration along contour C, of the scalar component of vector field $\mathbf{A}(\bar{r})$ that lies in the direction tangential to the contour C!

Note if vector field $\mathbf{A}(\bar{r})$ is orthogonal to the contour at every point, then the resulting line integral will be zero.

Although C represents any contour, no matter how complex or convoluted, we will study only basic contours. In other words, $d \ell$ will correspond to one of the differential line vectors we have previously determined for Cartesian, cylindrical, and spherical coordinate systems.

