The Magnetic Field

Now that we have defined **magnetization current**, we find that Ampere's Law for fields **within some material** becomes:

$$\nabla \mathbf{x} \mathbf{B}(\bar{\boldsymbol{r}}) = \mu_0 \left(\mathbf{J}(\bar{\boldsymbol{r}}) + \mathbf{J}_m(\bar{\boldsymbol{r}}) \right)$$
$$= \mu_0 \left(\mathbf{J}(\bar{\boldsymbol{r}}) + \nabla \mathbf{x} \mathbf{M}(\bar{\boldsymbol{r}}) \right)$$

This of course is **analogous** to the expression we derived for **Gauss's Law** in a dielectric media:

$$\nabla \cdot \mathbf{E}(\bar{r}) = \frac{\rho_{\nu}(\bar{r}) + \rho_{\nu p}(\bar{r})}{\varepsilon_{0}} = \frac{\rho_{\nu}(\bar{r}) - \nabla \cdot \mathbf{P}(\bar{r})}{\varepsilon_{0}}$$

Recall that we **removed** the polarization charge from this expression by defining a **new** vector field $\mathbf{D}(\bar{r})$, leaving us with the more **general** expression of Gauss's Law:

 $\nabla \cdot \mathbf{D}(\bar{\mathbf{r}}) = \rho_{\nu}(\bar{\mathbf{r}})$

Q: Can we similarly define a **new** vector field to "take care" of **magnetization** current ??

A: Yes! We call this vector field the magnetic field $H(\overline{r})$.

Jim Stiles

Let's begin by **rewriting** Ampere's Law as:

$$\nabla \mathbf{x} \mathbf{B}(\bar{\boldsymbol{r}}) - \mu_0 \, \mathbf{J}_m(\bar{\boldsymbol{r}}) = \mu_0 \, \mathbf{J}(\bar{\boldsymbol{r}})$$

Yuck! Now we see clearly the problem. In **free space**, if we know current distribution $\mathbf{J}(\bar{r})$, we can find the resulting magnetic flux density $\mathbf{B}(\bar{r})$ using the **Biot-Savart** Law:

$$\mathbf{B}(\overline{\mathbf{r}}) = \frac{\mu_0}{4\pi} \iiint \frac{\mathbf{J}(\overline{\mathbf{r}}') \times (\overline{\mathbf{r}} - \overline{\mathbf{r}}')}{|\overline{\mathbf{r}} - \overline{\mathbf{r}}'|^3} d\nu'$$

But this is the solution for current in **free space**! It is **no longer valid** if some **material** is present!

Q: Why?

A: Because, the magnetic flux density produced by current $\mathbf{J}(\bar{r})$ may magnetize the material (i.e., produce magnetic dipoles), thus producing magnetization currents $\mathbf{J}_m(\bar{r})$.

These magnetization currents $\mathbf{J}_m(\bar{r})$ will also produce a magnetic flux density—a modification of vector field $\mathbf{B}(\bar{r})$ that is **not** accounted for in the Biot-Savart expression shown above!

To determine the correct solution, we first recall that:

$$\mathbf{J}_m(\bar{\mathbf{r}}) = \nabla \mathbf{x} \mathbf{M}(\bar{\mathbf{r}})$$

Therefore Ampere's Law is:

$$\nabla \mathbf{x} \mathbf{B}(\bar{r}) - \mu_0 \nabla \mathbf{x} \mathbf{M}(\bar{r}) = \mu_0 \mathbf{J}(\bar{r})$$

$$\nabla \mathsf{x} \big[\mathsf{B}(\bar{r}) - \mu_0 \, \mathsf{M}(\bar{r}) \big] = \mu_0 \, \mathsf{J}(\bar{r})$$

$$\nabla \mathbf{x} \left[\frac{\mathbf{B}(\bar{r})}{\mu_0} - \mathbf{M}(\bar{r}) \right] = \mathbf{J}(\bar{r})$$

Now let's define a **new** vector field $H(\bar{r})$, called the **magnetic** field:

$$\mathbf{H}(\bar{r}) \doteq \frac{\mathbf{B}(\bar{r})}{\mu_0} - \mathbf{M}(\bar{r}) \qquad \left[\frac{Amps}{meter}\right]$$

$$\nabla \mathsf{x} \mathsf{H}(\bar{r}) = \mathsf{J}(\bar{r})$$

Hey! We **know** what the solution to **this** differential equation is! Recall the solution to:

$$\nabla \mathbf{x} \mathbf{B}(\bar{\boldsymbol{r}}) = \mu_0 \mathbf{J}(\bar{\boldsymbol{r}})$$

is the Biot-Savart Law.

If we make the substitution:

$$\mathbf{H}(\bar{r}) \leftrightarrow \frac{\mathbf{B}(\bar{r})}{\mu_{0}}$$

we find that both differential **equations** are identical. Therefore their **solutions** are also identical when making the **same** substitution.

Making this substitution into the Biot-Sarvart Law, we find that:

$$\mathbf{H}(\overline{\mathbf{r}}) = \frac{1}{4\pi} \iiint_{\mathbf{v}} \frac{\mathbf{J}(\overline{\mathbf{r}}') \times (\overline{\mathbf{r}} - \overline{\mathbf{r}}')}{\left|\overline{\mathbf{r}} - \overline{\mathbf{r}}'\right|^3} d\mathbf{v}'$$

Q: Swell. But may I remind you that we were **suppose** to be finding the solution for the $\&\%^{2}+*\#\&$ magnetic flux density $B(\bar{r})!$ True! But since we can find $H(\overline{r})$ from $J(\overline{r})$, our task **now** is to determine the **relationship** between $B(\overline{r})$ and $H(\overline{r})$.

We call the relationship between $\mathbf{B}(\bar{r})$ and $\mathbf{H}(\bar{r})$ a constitutive equation. For most media, we find that the magnetization vector $\mathbf{M}(\bar{r})$ is directly proportional to the magnetic field $\mathbf{H}(\bar{r})$:

$$\mathbf{M}(\bar{\boldsymbol{r}}) = \boldsymbol{\chi}_m \, \mathbf{H}(\bar{\boldsymbol{r}})$$

where the proportionality coefficient χ_m is the **magnetic** susceptibility of the material.

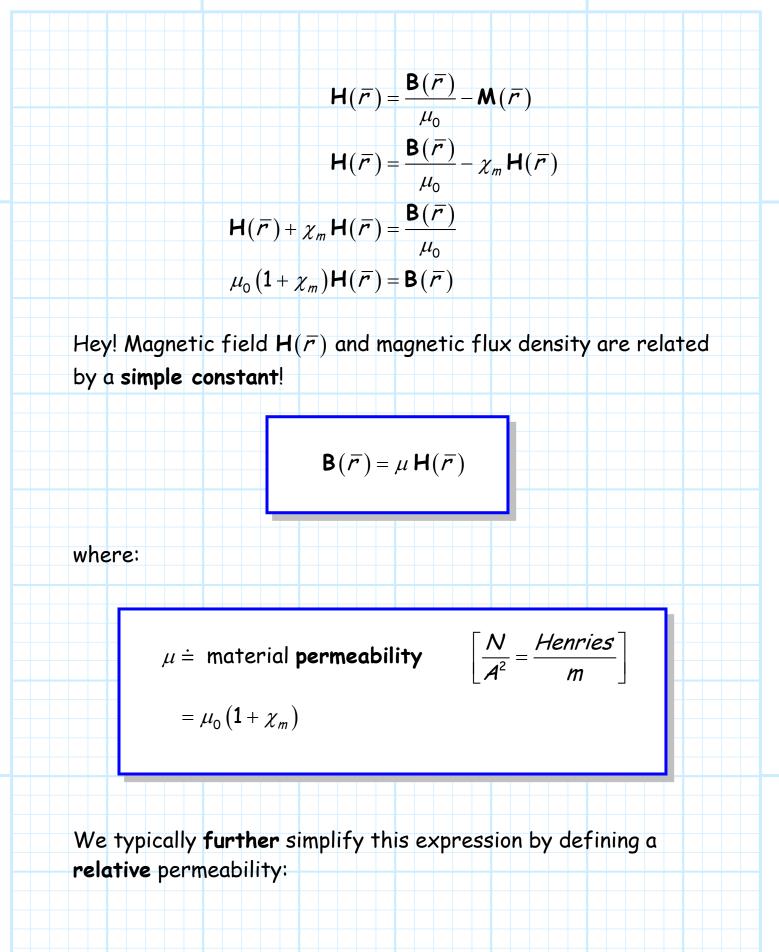
* Note that for a given magnetic field $H(\bar{r})$, as χ_m increases, the magnetization vector $M(\bar{r})$ increases.

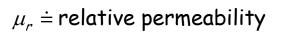
* Magnetic susceptibility χ_m therefore indicates how **susceptible** the material is to **magnetization**.

* In other words, χ_m is a measure of how easily (or difficult) it is to create and align **magnetic dipoles** (from atoms/molecules) within the **material**.

Again, note the **analogy** to electrostatics. We defined earlier **electric** susceptibility χ_e , which indicates how susceptible a material is to **polarization** (i.e., the creation of **electric** dipoles).

We can now determine the relationship between $B(\bar{r})$ and $H(\bar{r})$. Using the above expression, we find:





 $=1+\chi_m$

So that:

$$\mathbf{B}(\bar{\boldsymbol{r}}) = \mu \mathbf{H}(\bar{\boldsymbol{r}}) = \mu_0 \mu_r \mathbf{H}(\bar{\boldsymbol{r}})$$

In other words, if the **relative** permeability of some material was, say, $\mu_r = 2$, then the **permeability** of the material is **twice** that of the permeability of **free space** (i.e., $\mu = 2\mu_0$). This perhaps is more readily evident when we write:

$$u_r = \frac{\mu}{\mu_0}$$

11

Note that μ and/or μ_r are **proportional** to magnetic susceptibility χ_m . As a result, permeability is likewise an indication of how susceptible a material to magnetization.

* If $\mu_r = 1$, this susceptibility is that of **free space** (i.e., **none**!).

* Alternatively, a large μ_r indicates a material that is easily magnetized.

For example, the relative permeability of **iron** is μ_r =4000 !

Jim Stiles

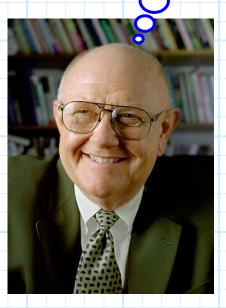
Now, we are finally able to determine the magnetic flux density in some material, produced by current density $J(\bar{r})!$

Since $\mathbf{B}(\bar{r}) = \mu \mathbf{H}(\bar{r})$ and:

$$\mathbf{H}(\overline{\mathbf{r}}) = \frac{1}{4\pi} \iiint_{\mathbf{v}} \frac{\mathbf{J}(\overline{\mathbf{r}}') \times (\overline{\mathbf{r}} - \overline{\mathbf{r}}')}{\left|\overline{\mathbf{r}} - \overline{\mathbf{r}}'\right|^{3}} d\mathbf{v}'$$

we find the desired solution:

$$\mathbf{B}(\bar{r}) = \frac{\mu}{4\pi} \iiint \frac{\mathbf{J}(\bar{r}') \mathbf{x}(\bar{r} - \bar{r}')}{\left|\bar{r} - \bar{r}'\right|^3} d\nu'$$



Comparing this result with the Biot-Sarvart Law for **free space**, we see that the only difference is that μ_0 has been replaced with μ !

This last result is therefore is a **more general** form of the Biot-Savart Law, giving the correct result for fields within some **material** with permeability μ . Of course, the "material" **could** be free space. However, the expression above will **still** provide the **correct** answer; because for free space $\mu = \mu_0$, thus returning the equation to its **original** (i.e., free space) form!

9/9

Summarizing, we can attribute the existence of a magnetic field $H(\bar{r})$ to conduction current $J(\bar{r})$, while we attribute the existence of magnetic flux density to the total current density, including the magnetization current.

$$\mathbf{J}(\bar{r}) \implies \mathbf{H}(\bar{r})$$

$$\mathbf{J}(\bar{\mathbf{r}}) + \mathbf{J}_m(\bar{\mathbf{r}}) \implies \mathbf{B}(\bar{\mathbf{r}})$$

Finally, we again want to note the analogies between electrostatics and the magnetostatic expressions derived in this handout:

$$\mathbf{B}(\bar{r}) = \mu_0 \mathbf{H}(\bar{r}) + \mu_0 \mathbf{M}(\bar{r}) \quad \Leftrightarrow \quad \mathbf{D}(\bar{r}) = \varepsilon_0 \mathbf{E}(\bar{r}) + \mathbf{P}(\bar{r})$$

$$\mathbf{B}(\bar{r}) = \mu_0 (1 + \chi_m) \mathbf{H}(\bar{r}) \quad \Leftrightarrow \quad \mathbf{D}(\bar{r}) = \varepsilon_0 (1 + \chi_e) \mathbf{E}(\bar{r})$$

$$\mathsf{B}(\bar{r}) = \mu \mathsf{H}(\bar{r}) \quad \Leftrightarrow \quad \mathsf{D}(\bar{r}) = \varepsilon \mathsf{E}(\bar{r})$$

 $\mathbf{M}(\bar{r}) \Leftrightarrow \mathbf{P}(\bar{r})$

 $\chi_m \Leftrightarrow \chi_e$

μ

Е