The Parallel

Plate Capacitor

Consider the geometry of a parallel plate capacitor:

Where:
$V_{0}=$ the potential difference between the plates
S = surface area of each conducting plate
$d=$ distance between plates
$\varepsilon=$ permittivity of the dielectric between the plates

Recall that we determined the fields and surface charge density of an infinite pair of parallel plates. We can use those results to approximate the fields and charge densities of this finite structure, where the area of each plate is S.

For example, we determined that the surface charge density on the upper plate is:

$$
\rho_{s+}(\bar{r})=\frac{\varepsilon V_{0}}{d}
$$

The total charge on the upper plate is therefore:

$$
\begin{aligned}
Q & =\iint_{S_{+}} \rho_{s+}(\bar{r}) d s \\
& =\iint_{S_{+}} \frac{\varepsilon V_{0}}{d} d s \\
& =\frac{\varepsilon V_{0}}{d} \iint_{S_{+}} d s \\
& =\frac{\varepsilon V_{0} S}{d}
\end{aligned}
$$

The capacitance of this structure is therefore:

$$
C=\frac{Q}{V}=\left(\frac{\varepsilon V_{0} S}{d}\right)\left(\frac{1}{V_{0}}\right)=\frac{\varepsilon S}{d} \quad[\text { Farads }]
$$

Note therefore, that we can increase the capacitance of a parallel plate capacitor by:

1) Increasing surface area S.
2) Decreasing separation distance d.
3) Increasing the dielectric permittivity ε.

Consider now the structure:

Note the two upper plates form one conducting structure, and the two bottom plates form another.

Q: What is the capacitance between these two conducting structures?

A: The potential difference between them is V_{0}. The total charge on one conducting structure is simply the sum of the charges on each plate:

$$
\begin{aligned}
Q & =Q_{1}+Q_{2}=\frac{\varepsilon V_{0} S_{1}}{d}+\frac{\varepsilon V_{0} S_{2}}{d} \\
& =\frac{\varepsilon V_{0}\left(S_{1}+S_{2}\right)}{d}
\end{aligned}
$$

Therefore, the capacitance of this structure is:

$$
\begin{aligned}
C & =\frac{Q}{V}=\left(\frac{\varepsilon V_{0}\left(S_{1}+S_{2}\right)}{d}\right)\left(\frac{1}{V_{0}}\right) \\
& =\frac{\varepsilon\left(S_{1}+S_{2}\right)}{d} \\
& =\frac{\varepsilon S_{1}}{d}+\frac{\varepsilon S_{2}}{d} \\
& =C_{1}+C_{2}
\end{aligned}
$$

But you knew this! The total capacitance of two capacitors in parallel is equal to the sum of each capacitance.

