The Triple Product

The **triple product** is not a "new" operation, as it is simply a combination of the **dot** and **cross** products.

The triple product of vectors **A**, **B**, and **C** is **denoted** as:

A · B×C

Q: *Yikes! Does this mean:*

 $(\mathbf{A} \cdot \mathbf{B}) \times \mathbf{C}$

or

 $\mathbf{A} \cdot (\mathbf{B} \mathbf{x} \mathbf{C})$

A: The answer is **easy** ! Only one of these two interpretations makes sense:

In the **first** case, $\mathbf{A} \cdot \mathbf{B}$ is a scalar value, say $d = \mathbf{A} \cdot \mathbf{B}$. Therefore we can write the first equation as:

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{d} \times \mathbf{C}$$

But, this makes no sense! The cross product of a **scalar** and a vector has **no meaning**.

In the **second** interpretation, the cross product $\mathbf{B} \times \mathbf{C}$ is a **vector**, say $\mathbf{B} \times \mathbf{C} = \mathbf{D}$. Therefore, we can write the second equation as:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \cdot \mathbf{D}$$

Not only does this make sense, but the result is a scalar !

The triple product $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$ results in a scalar value.

The Cyclic Property

It can be shown that the triple product of vectors **A**, **B**, and **C** can be evaluated in three ways:

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{C} \cdot \mathbf{A} \times \mathbf{B} = \mathbf{B} \cdot \mathbf{C} \times \mathbf{A}$$

