The Unit Vector

Now that we understand multiplication and division of a vector by a scalar, we can discuss a very important concept: the unit vector.

Lets begin with vector A. Say we divide this vector by its magnitude (a scalar value). We create a new vector, which we will denote as \hat{a}_{A} :

$$
\hat{a}_{A}=\frac{\boldsymbol{A}}{|\boldsymbol{A}|}
$$

Q: How is vector \hat{a}_{A} related to vector \boldsymbol{A} ?

A: Since we divided \boldsymbol{A} by a scalar value, the vector \hat{a}_{A} has the same direction as vector \boldsymbol{A}.

But, the magnitude of \hat{a}_{A} is:

$$
\left|\hat{a}_{A}\right|=\frac{|\boldsymbol{A}|}{|\boldsymbol{A}|}=1
$$

The vector \hat{a}_{A} has a magnitude equal to one! We call such a vector a unit vector.

A unit vector is essentially a description of direction only, as its magnitude is always unit valued (i.e., equal to one). Therefore:

* $|\boldsymbol{A}|$ is a scalar value that describes the magnitude of vector \boldsymbol{A}.
* \hat{a}_{A} is a vector that describes the direction of \boldsymbol{A}.

Rearranging the formula on the previous page, we can express vector \boldsymbol{A} as:

$$
\boldsymbol{A}=|A| \hat{a}_{A}
$$

Thus, any vector can be written as the product of its magnitude and its unit vector!

Q: What, approximately, is the magnitude of vector A shown above?

A: $|\boldsymbol{A}|=$

