The p-n Junction Diode in Breakdown

If reverse bias too large (i.e., $v_D \leftarrow -V_{ZK}$), the **covalent** bonds within the depletion region will **break**.

Therefore, **free** electrons are created (i.e., **conductivity** σ goes from zero to very high).

Large electric field and high conductivity:

This means high current $(\mathbf{J} = \sigma \mathbf{E})$!!

Attempts to decrease v_D past $-V_{ZK}$ instead just causes further breaking of covalent bonds (i.e., conductivity σ increases). Therefore $|i_D|$ increases while $v_D \approx -V_{ZK}$.

There are two mechanisms for breakdown.

1) Zener Effect - Covalent bonds break because of large E-field.

2) Avalanche Effect - Bonds break due to kinetic energy of drift current.