Vector Fields

Base vectors give us a convenient way to express vector fields!
You will recall that a vector field is a vector quantity that is a function of other scalar values. In this class, we will study vector fields that are a function of position (e.g., $\boldsymbol{A}(x, y, z)$).

We earlier considered an example of a vector field of this type: the wind velocity $\mathbf{v}(x, y)$ across the upper Midwest.


```
|\mp@code{lllllllllllll}}\begin{array}{llll}{0}&{2}&{4}&{6}
```

When we express a vector field using orthonormal base vectors, the scalar component of each direction is a scalar field-a scalar function of position!

In other words, a vector field can have the form:

$$
A(x, y, z)=A_{x}(x, y, z) \hat{a}_{x}+A_{y}(x, y, z) \hat{a}_{y}+A_{z}(x, y, z) \hat{a}_{z}
$$

We therefore can express a vector field $\mathbf{A}(x, y, z)$ in terms of 3 scalar fields: $A_{x}(x, y, z), A_{y}(x, y, z)$, and $A_{z}(x, y, z)$, which express each of the 3 scalar components as a function of position (x, y, z).

For example, we might encounter this vector field:

$$
A(x, y, z)=\left(x^{2}+y^{2}\right) \hat{a}_{x}+\frac{x z}{y} \hat{a}_{y}+(3-y) \hat{a}_{z}
$$

In this case it is evident that:

$$
\begin{aligned}
& A_{x}(x, y, z)=\left(x^{2}+y^{2}\right) \\
& A_{y}(x, y, z)=\frac{x z}{y} \\
& A_{z}(x, y, z)=(3-y)
\end{aligned}
$$

The vector algebraic rules that we discussed in previous handouts are just as valid for vector fields and scalar field components as they are for discrete vectors and discrete scalar components.

For example, consider these two vector fields, expressed in terms of orthonormal base vectors $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$:

$$
\begin{aligned}
& \mathrm{A}(x, y, z)=y^{2} \hat{a}_{x}+(x-z) \hat{a}_{y}+\frac{y}{z} \hat{a}_{z} \\
& \mathrm{~B}(x, y, z)=(x+2) \hat{a}_{x}+z \hat{a}_{y}+x y z \hat{a}_{z}
\end{aligned}
$$

The dot product of these two vector fields is a scalar field:

$$
\begin{aligned}
\mathrm{A}(x, y, z) \cdot \mathrm{B}(x, y, z) & =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
& =y^{2}(x+2)+\left(x z-z^{2}\right)+x y^{2}
\end{aligned}
$$

Likewise, the sum of these two vector fields is a vector field:

$$
\begin{aligned}
\mathbf{A}(x, y, z)+\mathbf{B}(x, y, z) & =\left(A_{x}+B_{x}\right) \hat{a}_{x}+\left(A_{y}+B_{y}\right) \hat{a}_{y}+\left(A_{z}+B_{z}\right) \hat{a}_{z} \\
& =\left(y^{2}+x+2\right) \hat{a}_{x}+x \hat{a}_{y}+\frac{y\left(x z^{2}+1\right)}{z} \hat{a}_{z}
\end{aligned}
$$

Note the example vector fields we have shown here are a function of spatial coordinates only. In other words, the vector field is constant with respect to time-the discrete vector quantity at any and every point in space never changes its magnitude or direction.

However, we find that many (if not most) vector fields found in nature do change with respect to both spatial position and time.

Thus, we often discover that vector fields must be written as variables of three spatial coordinates, as well as a time variable $t!$

For example:

$$
A(x, y, z, t)=\left(x^{2}+y^{2}\right) t \hat{a}_{x}+\frac{x z}{y} t^{2} \hat{a}_{y}+(3-y+4 t) \hat{a}_{z}
$$

* A vector field that changes with respect to time is known as a dynamic vector field.
* A vector field that is constant with respect to time is known as a static vector field.

