<u>Voltage and Electric</u>

<u>Potential</u>

An important application of the line integral is the calculation of work. Say there is some vector field $\mathbf{F}(\overline{\mathbf{r}})$ that exerts a **force** on some object.

Q: How much work (W) is done by this vector field if the object moves from point P_a to P_b, along contour C ??

A: We can find out by evaluating the line integral:

 $W_{ab} = \int \mathbf{F}(\mathbf{\bar{r}}) \cdot d\ell$

Say this object is a **charged particle** with charge Q, and the force is applied by a static **electric field E** (\overline{r}) . We **know** the force on the charged particle is:

$$F(\overline{r}) = QE(\overline{r})$$

Ph

 $\mathcal{W}_{ab} = \int_{C} \mathbf{F}(\overline{\mathbf{r}}) \cdot \overline{d\ell}$ $= \mathcal{Q} \int_{C} \mathbf{E}(\overline{\mathbf{r}}) \cdot \overline{d\ell}$

and thus the work done **by the electric field** in moving a charged particle along some contour C is:

Q: Oooh, I don't like evaluating contour integrals; isn't there some **easier** way?

A: Yes there is! Recall that a static electric field is a conservative vector field. Therefore, we can write any electric field as the gradient of a specific scalar field $V(\bar{r})$:

$$\mathsf{E}(\overline{\mathsf{r}}) = -\nabla \, \mathsf{V}(\overline{\mathsf{r}})$$

We can then evaluate the work integral as:

$$W_{ab} = Q \int_{C} \mathbf{E}(\overline{\mathbf{r}}) \cdot \overline{d\ell}$$
$$= -Q \int_{C} \nabla V(\overline{\mathbf{r}}) \cdot \overline{d\ell}$$
$$= -Q \left[V(\overline{\mathbf{r}}_{b}) - V(\overline{\mathbf{r}}_{a}) \right]$$
$$= Q \left[V(\overline{\mathbf{r}}_{a}) - V(\overline{\mathbf{r}}_{b}) \right]$$

Jim Stiles

$$V_{ab} \doteq V(\overline{r_a}) - V(\overline{r_b})$$

Therefore:

$$W_{ab} = Q V_{ab}$$

Q: So what the heck is V_{ab} ? Does it mean any thing? Do we use it in engineering?

A: First, consider what W_{ab} is!

The value W_{ab} represents the work done by the electric field on charge Q when moving it from point P_a to point P_b . This is precisely the same concept as when a gravitational force field moves an object from one point to another.

The work done by the gravitational field in this case is equal to the **difference** in **potential energy** (*P.E.*) between the object at these two points.

Q: Great, now we know what W_{ab} is. But the question was, **WHAT IS** V_{ab} !?!

A: That's easy! Just rearrange the above equation:

 $V_{ab} = \frac{W_{ab}}{Q}$

* In other words V_{ab} represents the difference in potential energy for **each** coulomb of charge in Q.

* Another way to look at it: V_{ab} is the difference in potential energy if the particle has a charge of **1** Coulomb (i.e., Q = 1).

Note that V_{ab} can be expressed as:

$$V_{ab} = \int_{C} \mathbf{E}(\overline{\mathbf{r}}) \cdot \overline{\mathbf{d}\ell}$$
$$= \mathbf{V}(\overline{\mathbf{r}}_{a}) - \mathbf{V}(\overline{\mathbf{r}}_{b})$$

where point P_a lies at the **beginning** of contour C, and P_b lies at the **end**.

Jim Stiles

We refer to the scalar field $V(\overline{r})$ as the electric potential function, or the electric potential field.

We likewise refer to the scalar value V_{ab} as the electric potential **difference**, or simply the **potential difference** between point P_a and point P_b .

Note that V_{ab} (and therefore $V(\overline{r})$), has units of:

$$V_{ab} = \frac{W_{ab}}{Q} \quad \left[\frac{\text{Joules}}{\text{Coulomb}}\right]$$

Joules/Coulomb is a rather **awkward** unit, so we will use the other name for it—VOLTS!

 $\frac{1 \text{ Joule}}{\text{Coulomb}} \doteq 1 \text{ Volt}$

Q: Hey! We used volts in **circuits** class. Is this the **same** thing ?

A: It is precisely the same thing !

Perhaps this will help. Say P_a and P_b are two points somewhere on a circuit. But let's call these points something different, say point + and point - . Therefore, *V* represents the **potential difference** (in volts) **between** point (i.e., **node**) + and point (**node**) - . Note this value can be either **positive** or **negative**.

 $V = \int_{C} \mathbf{E}(\bar{\mathbf{r}}) \cdot \overline{d\ell}$

A: Absolutely! Anytime you can measure a voltage (i.e., a potential difference) between two points, an electric field must be present!