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Differential  
Displacement Vectors 

 
The derivative of a position vector r , with respect to 
coordinate value  (where { }, , , , , ,x y z rρ φ θ∈ ) is expressed as: 
 
 

( )
( ) ( ) ( )

ˆ ˆ ˆ

ˆˆ ˆ

ˆ ˆ ˆ

x y z

yx z

x y z

d r d x y z
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d d d

d yd x d z
d d d

= + +

= + +

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

a a a

aa a

a a a

 

 
 
 

 
 
 
 
 
 
 
A:  The vector above describes the change in position vector r  
due to a change in coordinate variable .  This change in position 
vector is itself a vector, with both a magnitude and direction. 
 

Q:  Immediately tell me 
what this incomprehensible 
result means or I shall be 
forced to pummel you ! 
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For example, if a point moves such that its coordinate  changes 
from  to + ∆ , then the position vector that describes that 
point changes from r  to  + r ∆ . 
 
 
 
 
 
 
 
 
 
 
In other words, this small vector ∆  is simply a directed 
distance between the point at coordinate  and its new location 
at coordinate + ∆ ! 
 
This directed distance ∆  is related to the position vector 
derivative as: 
 

ˆ ˆ ˆ

 

x y z

d r
d

dydx dza a a
d d d

∆ = ∆

⎛ ⎞⎛ ⎞ ⎛ ⎞= ∆ + ∆ + ∆⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
As an example, consider the case when ρ= .  Since  cosx ρ φ=  
and  siny ρ φ=  we find that: 
 

r  
 + r ∆

∆  
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( ) ( )
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A change in position from coordinates , , zρ φ  to , , zρ ρ φ+ ∆  
results in a change in the position vector from r  to  + r ∆ .  
The vector ∆   is a directed distance extending from point 

, , zρ φ  to point , , zρ ρ φ+ ∆ , and is equal to: 
 

ˆ ˆ

ˆ

r
d
cos sinx y

d

a a
aρ

ρ
ρ

ρ φ ρ φ

ρ

∆ = ∆

= ∆ + ∆

= ∆

 

 
 
 
 
 
 
 
 

 
If ∆  is really small (i.e., as it approaches zero) we can define  
something called a differential displacement vector d : 
 
 

 

r

ˆ paρ∆ = ∆  

y 

x 
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For example: 

ˆrdd d a d
d ρρ ρ ρ
ρ

= =  

 
Essentially, the differential line vector d  is the tiny directed 
distance formed when a point changes it location by some tiny 
amount, resulting in a change of one coordinate value  by an 
equally tiny (i.e., differential) amount d .   
 
The directed distance between the original location (at 
coordinate value ) and its new location (at coordinate value 

d+ ) is the differential displacement vector d . 
 
 
 
 
 
 
 We will use the differential line vector when evaluating a line 
integral.    

r  

 + r d  

d  
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The Differential  
Displacement Vector for  

Coordinate Systems 
 
Let’s determine the differential displacement vectors for each 
coordinate of the Cartesian, cylindrical and spherical coordinate 
systems! 
 
Cartesian 
 
This is easy! 
 
 

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

ˆ

r

r
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Cylindrical 
 
Likewise, recall from the last handout that: 
 

ˆd a dρρ ρ=  
 
 

 
 

ˆ

ˆ

ˆ

ˆ

r

r

r

r

x

y

z

ddx dx a dx
dx
ddy dy a dy
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A:  NO!! Do not make this mistake! For example, consider d φ :         

( )
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=
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= + +

= − +

= − + =

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

Q: No!! ˆd a dφφ φρ= ?!? 
How did the coordinate 
ρ get in there?  

Q: It seems very apparent that: 
 

ˆd a d=  
 
for all coordinates ; right ? 

 Maria, look! I’m starting to see a trend!  
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The scalar differential value dρ φ  makes sense!  The 
differential displacement vector is a directed distance, thus 
the units of its magnitude must be distance (e.g., meters, feet).  
The differential value dφ has units of radians, but the 
differential value dρ φ  does have units of distance. 
 
The differential displacement vectors for the cylindrical 
coordinate system is therefore: 
 
 

ˆ

ˆ

ˆ

r

r

r

p

z

dd d a d
d
dd d a d
d
ddz dz a dz
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ρ ρ ρ
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Likewise, for the spherical coordinate system, we find that: 
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ddr dr a dr
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The Line Integral 
 
This integral is alternatively known as the contour integral.  The 
reason is that the line integral involves integrating the 
projection of a vector field onto a specified contour C,  e.g., 
 
 

( )
C

cr d⋅∫A  

 
 
Some important things to note: 
 

* The integrand is a scalar function. 
 

* The integration is over one dimension. 
 

* The contour C is a line or curve through three-
dimensional space.   

 
* The position vector cr  denotes only those points that lie 

on contour C.  Therefore, the value of this integral only 
depends on the value of vector field ( )rA  at the points 
along this contour. 
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Q: What is the differential vector d , and how does it 
relate to contour C ? 
 
A: The differential vector d  is the tiny directed 
distance formed when a point moves a small distance 
along contour C. 

 
 
 

 
 

 
 
 
 
 
 
As a result, the differential line vector d  is always tangential 
to every point of the contour.  In other words, the direction of 
d  always points “down” the contour.   
 

Q: So what does the scalar integrand ( )cr d⋅A  mean? 
What is it that we are actually integrating?  
 
A:  Essentially, the line integral integrates (i.e., “adds up”) 
the values of a scalar component of vector field ( )rA  at 
each and every point along contour C.  This scalar 
component of vector field ( )rA  is the projection of ( )crA  
onto the direction of the contour C. 

 

C 

d

cr cr d+Contour C 

origin 
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First, I must point out that the notation ( )crA  is non-
standard.  Typically, the vector field in the line 
integral is denoted simply as ( )rA .  I use the notation 

( )crA  to emphasize that we are integrating the values 
of the vector field ( )rA  only at point that lie on 
contour C, and the points that lie on contour C are 
denoted as position vector cr . 
 
In other words, the values of vector field ( )rA  at 
points that do not lie on the contour (which is just 
about all of them!) have no effect on the integration.  
The integral only depends on the value of the vector 
field as we move along contour C—we denote these 
values as ( )crA . 
 

 
Moreover, the line integral depends on only one component of 

( )crA ! 
 

Q:  On just what component of ( )crA  does the integral 
depend? 
 
A:  Look at the integrand ( )cr d⋅A  --we see it involves the 
dot product!  Thus, we find that the scalar integrand is 
simply the scalar projection of ( )crA  onto the differential 
vector d .  As a result, the integrand depends only the 
component of ( )crA  that lies in the direction of d --and d  
always points in the direction of the contour C! 
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To help see this, first note that ( )crA , the value of the vector 
field along the contour, can be written in terms of a vector 
component tangential to the contour (i.e, ˆ( )cA r a ), and a vector 
component that is normal (i.e., orthogonal) to the contour (i.e, 

ˆ( )n c nA r a ): 
 

ˆ( ) () ˆ( )nc c c nA r a Ar r aA = +  
 
 
 
 
 
 
 
 
 
 
 
 
 
We likewise note that the differential line vector d , like any 
and all vectors, can be written in terms of its magnitude ( d ) 
and direction ( â ) as: 
 

ˆd a d=  
 

For example, for  ˆd d aφφ ρ φ= , we can say d dρ φ=  and 
ˆ ˆa aφ= . 

 

C 

ˆ( )cA r a

ˆ( )n c nA r a
( )crA ˆ ˆ 0na a⋅ =

cr
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As a result we can write: 
 

( ) ˆ( )

ˆ( ˆ

ˆ

ˆ ˆ
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a d
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⋅ = + ⋅⎡ ⎤⎣ ⎦

= + ⋅⎡ ⎤⎣ ⎦

= ⋅ + ⋅⎡ ⎤⎣ ⎦

=

∫ ∫

∫

∫

∫

A

 

 
 
 
 
 
 
 
 
 
 
 
Note if vector field ( )rA  is orthogonal to the contour at every 
point, then the resulting line integral will be zero. 
 
 
 
 
 
 
 
 

A 

C 

d

( )r 0d⋅ =A

In other words, the line 
integral is simply an 
integration along 
contour C of the scalar 
component of vector 
field ( )rA  in the 
direction tangential to 
the contour C ! 
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Although C represents any contour, no matter how complex or 
convoluted, we will study only basic contours.  In other words, 
d  will correspond to one of the differential line vectors we 
have previously determined for Cartesian, cylindrical, and 
spherical coordinate systems. 
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The Contour C 
 
In this class, we will limit ourselves to studying only those 
contours that are formed when we change the location of a 
point by varying just one coordinate parameter.  In other 
words, the other two coordinate parameters will remain fixed.   
 
Mathematically, therefore, a contour is described by: 
 

2 equalities (e.g., x =2, y =-4; r =3, φ =π/4) 
 

AND 
 

1 inequality (e.g., -1 < z < 5;  0 <  θ  < π/2) 
 

Likewise, we will need to explicitly determine the differential 
displacement vector d  for each contour. 
 
Recall we have studied seven coordinate parameters 
( , , , , , ,x y z rρ φ θ ).  As a result, we can form seven different 
contours C! 
 
Cartesian Contours 
 
Say we move a point from P(x =1, y =2, z =-3) to P(x =1, y =2, z 
=3) by changing only the coordinate variable z from z =-3 to z 
=3.  In other words, the coordinate values x and y remain 
constant at x = 1 and   y  = 2. 
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We form a contour that is a line segment, parallel to the z- 
axis! 
 
 
 
 
 
 
 
 
 
 
Note that every point along this segment has coordinate values 
x =1 and y =2.  As we move along the contour, the only 
coordinate value that changes is z.   
 
Therefore, the differential directed distance associated with a 
change in position from z to z +dz, is ˆ zd dz a dz= = . 
 
 
 
 
 
 
 
 
 
 
 

x 

y 

z 
P(1,2,3) 

P(1,2,-3) 

C 

x 

y 

z 
P(1,2,3) 

P(1,2,-3) 

C 

dz
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Similarly, a line segment parallel to the x-axis (or y-axis) can be 
formed by changing coordinate parameter x (or y), with a 
resulting differential displacement vector of ˆ xd dx a dx= =  
(or ˆ yd dy a dy= = ). 
 
The three Cartesian contours  are therefore: 
 
 
 

1. Line segment parallel to the z-axis 
 

1 2x y z zx c y c c z c= = ≤ ≤  
 
ẑd a dz=  

 
 

2. Line segment parallel to the y-axis 
 

1 2x zy yx c c y c z c= ≤ ≤ =  
 

ŷd a dy=  
 
 

3. Line segment parallel to the x-axis 
 

1 2 y zx xc x c y c z c≤ ≤ = =  
 
x̂d a dx=  
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Cylindrical Contours 
 
Say we move a point from P(ρ =1, 45φ = , z =2) to P(ρ =3, 

45φ = , z =2) by changing only the coordinate variable ρ from 
ρ =1 to ρ =3.  In other words, the coordinate values φ and z 
remain constant at 45φ = and z =2. 
 
We form a contour that is a line segment, parallel to the x-y 
plane (i.e., perpendicular to the z-axis). 
 
 
 
 
 
 
 
 
 
 
 
Note that every point along this segment has coordinate 
values 45φ =  and z =2.  As we move along the contour, the only 
coordinate value that changes is ρ.   
 

x 

y 

z 
P(1,45 ,2) 

C P(3,45 ,2) 
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Therefore, the differential directed distance associated with a 
change in position from ρ to ρ +dρ, is d d a dˆ ρρ ρ= = . 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Alternatively, say we move a point from P(ρ =3, 0φ = , z =2) to 
P(ρ =3, 90φ = , z =2) by changing only the coordinate variable 
φ  from φ=0 to 90φ = .  In other words, the coordinate values ρ 
and z remain constant at ρ =3 and z =2. 
 
We form a contour that is a circular arc, parallel to the x-y 
plane. 
 
 
 
 
 
 
 
 
 
 

x 

y 

z P(3,90 ,2) 

C 

P(3,0,2) 

x 

y 

z 
P(1,45 ,2) 

d ρ P(3,45 ,2) 
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Note: if we move from φ = 0 to 360φ = , a complete circle is 
formed around the z-axis. 
 
Every point along the arc has coordinate values 3ρ =  and z =2.  
As we move along the contour, the only coordinate value that 
changes is φ.   
 
Therefore, the differential directed distance associated with a 
change in position from φ to φ +dφ, is: 
 

d d a dˆ φφ ρ φ= = . 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, changing coordinate z generates the third cylindrical 
contour—but we already did that in Cartesian coordinates!  The 
result is again a line segment parallel to the z-axis. 
 
The three cylindrical contours are therefore described as:

x 

y 

z P(3,90 ,2) 

C 

P(3,0,2) d φ
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1. Line segment parallel to the z- axis. 
 

1 2z zc c c z cρ φρ φ= = ≤ ≤  
 

ẑd a dz=  
 
 

2. Circular arc parallel to the x-y plane. 
 

1 2 zc c c z cρ φ φρ φ= ≤ ≤ =  
 

ˆd a dφ ρ φ=  
 
 

3. Line segment parallel to the x-y plane. 
 

1 2 zc c c z cφρ ρρ φ≤ ≤ = =  
 

ˆd a dρ ρ=  
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Spherical Contours 
 
Say we move a point from P(r =0, 60θ = , 45φ = ) to P(r =3, 

60θ = , 45φ = ) by changing only the coordinate variable r from 
r=0 to r =3.  In other words, the coordinate values θ and φ 
remain constant at 60θ = and 45φ = . 
 
We form a contour that is a line segment, emerging from the 
origin. 
 
 
 
 
 
 
 
 
 
 
 
Every point along the line segment has coordinate values 60θ =  
and 45φ = .  As we move along the contour, the only coordinate 
value that changes is r.   
 

P(3,60 ,45 ) 

x 

y 

z 

C 

P(0,60 ,45 ) 



09/07/04 The Contour C.doc 9/11/ 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Therefore, the differential directed distance associated with a 
change in position from r to r +dr, is ˆ rd dr a dr= = . 
 
 
 
 
 
 
 

 
 
 
 
 
 
Alternatively, say we move a point from P(r =3, 0θ = , 45φ = ) to 
P(r =3, 90θ = , 45φ = ) by changing only the coordinate variable 
θ from θ = 0 to θ =90 .  In other words, the coordinate values θ 
and φ remain constant at 60θ = and 45φ = . 
 
We form a circular arc, whose plane includes the z-axis. 

x 

y 

z 

C 

P(3,0,45 ) 

P(3,90 ,45 ) 

x 

y 

z 

P(0,60 ,45 ) 

P(3,60 ,45 ) 
dr
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Every point along the arc has coordinate values 3r =  and 

45φ = .  As we move along the contour, the only coordinate 
value that changes is θ.   
 
Therefore, the differential directed distance associated with a 
change in position from θ  to θ +dθ, is ˆd d a rdθθ θ= = . 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, we could fix coordinates r and θ and vary coordinate φ 
only—but we already did this in cylindrical coordinates!  We 
again find that a circular arc is generated,  an arc that is 
parallel to the x-y plane. 
 
The three spherical contours are therefore: 

x 

y 

z 

C 

P(3,0,45 ) 

P(3,90 ,45 ) 

dθ
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1.  A circular arc parallel to the x-y plane. 

 
1 2rr c c c cθ φ φθ φ= = ≤ ≤  

 
ˆ sind a r dφ θ φ=  

 
2.  A circular arc in a plane that includes the z-axis. 

 
1 2rr c c c cφθ θθ φ= ≤ ≤ =  

 
ˆd a r dθ θ=  
 

3.  A line segment directed toward the origin.  
 

1 2r rc r c c cθ φθ φ≤ ≤ = =  
 

r̂d a dr=  
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Line Integrals with 
Complex Contours 

 
Consider a more complex contour, such as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: True! But we can still easily evaluate a line integral over 
this contour C.  The trick is to divide C into two contours, 
denoted as C1 and C2: 

x 

y 

C 

x 

y 

C1 

C2 

Q:  What’s this flim-flam?! This contour can 
neither be expressed in terms of single coordinate 
inequality, nor with single differential line vector!  
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We can denote contour C as C = C1 + C2.  It can be shown that: 
 
 

( ) ( ) ( )
1 2

c c c
C C C

r d r d r d⋅ = ⋅ + ⋅∫ ∫ ∫A A A  

 
 

Note for the example given, we can evaluate the integral over 
both contour C1 and contour C2.  The first is a circular arc 
around the z-axis, and the second is a line segment parallel to 
the y-axis. 
 
 

Q:  Does the direction of the contour matter? 
 
A:  YES! Every contour has a starting point and an end 
point.  Integrating along the contour in the opposite 
direction will result in an incorrect answer! 
 
 

For example, consider the two contours below: 
 
 y 

x 

C1 

x 

C2 

y 
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In this case, the two contours are identical, with the exception 
of direction.  In other words the beginning point of one is the 
end point of the other, and vice versa. 
 
For this example, we would relate the two contours by saying: 
 

C1=-C2   and/or    C2=-C1 
 

Just like vectors, the negative of a contour is an otherwise 
identical contour with opposite direction.  We find that: 
 
 

( ) ( )c c
C C

r d r d
−

⋅ = − ⋅∫ ∫A A  

 
 
 
 

 
Q:  Does the shape of the contour really matter, or 
does the result of line integration only depend on the 
starting and end points ?? 
 
A:  Generally speaking, the shape of the contour does 
matter.  Not only does the line integral depend on 
where we start and where we finish, it also depend on 
the path we take to get there! 
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For example, consider these two contours: 
 
 
 
 
 
 
 
 
 
Generally speaking, we find that: 
 

( ) ( )
1 2

c c
C C

r d r d⋅ ≠ ⋅∫ ∫A A  

 
An exception to this is a special category of vector fields called 
conservative fields.  For conservative fields, the contour path 
does not matter—the beginning and end points of the contour 
are all that are required to evaluate a line integral ! 
 
 
   
 

y 

x 

C1 
C2 

Remember the name 
conservative vector fields, as 
we will learn all about them 
later on.  You will find that a 
conservative vector field has 
many properties that make it—
well—EXCELLENT! 
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Steps for Analyzing 
Line Integrals 

 
You wish to evaluate an integral of the form: 
 

( )cr
C

d⋅∫A  

To successfully accomplish this, simply follow these steps: 
 
 

Step 1:  Determine the 2 equalities, 1 inequality, and 
d  for the contour C. 

 
Step 2:  Evaluate the dot product ( )r d⋅A . 
 
Step 3: Transform all coordinates of the resulting 

scalar field to the same system as C. 
 
Step 4: Evaluate the scalar field using the two 

coordinate equalities that describe contour C. 
 

Step 5: Determine the limits of integration from the 
inequality that describes contour C (be 
careful of order!). 

 
Step 6:  Integrate the remaining function of one 

coordinate variable. 
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Example: The Line Integral 
 
Consider the vector field: 
 

( ) ˆ ˆc x yr z x= −A a a  
 

Integrate this vector field over contour C, a straight line that 
begins at the origin and ends at point ( )4, =60 , =45P r θ φ= . 
 
 
 
 
 
 
 
 
 
 
 
Step 1:  Determine the two equalities, one inequality, and 
proper d  for the contour C. 
  
This contour is formed as the coordinate r changes from r =0 to 
r =4, where 60θ =  and 45φ =  for all points.  The two equalities 
and one inequality that define this contour are thus: 
 

0 4 60 45r θ φ≤ ≤ = =  

x 

y 

z 

C 
P(4,60 ,45 ) 
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and the differential displacement vector for this contour is 
therefore: 

r̂d dr dr= = a  
 

Step 2: Evaluate the dot product ( )cr d⋅A . 
 

( ) ( )
( )
( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

sin cos sin sin

c x y r

x r y r

r d z a x a a dr

z a a x a a dr
z x drθ φ θ φ

⋅ = − ⋅

= ⋅ − ⋅

= −

A

 

 
Step 3: Transform all coordinates of the resulting scalar field 
to the same system as C. 
 
The contour is a spherical contour.  Recall that cosz r θ=  and 

sin cosx r θ φ= , therefore: 
 

( ) ( )
( )

( )

sin cos sin sin
cos sin cos sin cos sin sin
sin cos cos sin sin

cr d z x dr
r r dr

r dr

θ φ θ φ

θ θ φ θ φ θ φ

θ φ θ θ φ

⋅ = −

= −

= −

A
 

 
 
Step 4:  Evaluate the scalar field using the two coordinate 
equalities that describe contour C. 
 
Recall that =60  and =45θ φ  at every point along the contour we 
are integrating over.  Thus, functions of θ or φ are constants 
with respect to the integration!  For example, 
cos cos 45 0.5θ = = .  Therefore: 
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( ) ( )

( )
sin60 cos45 cos60 sin60 sin45

3 31 1 1
4 2 2 4 2

2 33
8 8

6 3
8

cr d r dr

r dr

r dr

r dr

⋅ = −

= −

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

A

 

 
 
Step 5: Determine the limits of integration from the inequality 
that describes contour C (be careful of order!). 
 
We note the contour is described as: 
 

0 4r≤ ≤  
 

and the contour C moves from r = 0 to r = 4.  Thus, we integrate 
from 0 to 4 : 
 

4

0

6 3( ) 8c
C

r d r drA
⎛ ⎞− ⎟⎜⋅ = ⎟⎜ ⎟⎟⎜⎝ ⎠∫ ∫  

 
Note: if the contour ran from r = 4 to r = 0  the limits of 
integration would be flipped!  I.E.,  
 

0

4

6 3
8 r dr

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠∫  
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It is readily apparent that the line integral from r = 0 to r =4 is 
the opposite (i.e., negative) of the integral from r = 4 to r =0. 
 

 
Step 6:  Integrate the remaining function of one coordinate 
variable. 
 

4

0
4

0
2 2

6 3( ) 8

6 3
8

6 3 4 0
8 2 2

6 3

c
C

r d r dr

r dr

A
⎛ ⎞− ⎟⎜⋅ = ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞− ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞⎛ ⎞− ⎟⎟⎜⎜= − ⎟⎟⎜⎜ ⎟⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠
= −

∫ ∫

∫   
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Differential Surface 
Vectors 

 
Consider a rectangular surface, oriented in some arbitrary 
direction: 
 
 
 

 
 
 

 
 
We can describe this surface using vectors!  One vector (say 
A), is a directed distance that denotes the length (i.e, 
magnitude) and orientation of one edge of the rectangle, while 
another directed distance (say B) denotes the length and 
orientation of the other edge. 
 
Say we take the cross-product of these two vectors (AxB=C).   
 

Q:  What does this vector C represent? 
 
A:  Look at the definition of cross product! 

B 

A 

C=AxB 
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x
sinˆ

ˆ
n AB

n

a
a

θ

=

=

=

C A B
A B
A B

 

 
Note that: 

=C A B  
 
The magnitude of vector C is therefore product of the lengths 
of each directed distance—the area of the rectangle! 
 
Likewise, 0⋅ =C A  and 0⋅ =C B , therefore vector C is 
orthogonal (i.e., “normal”) to the surface of the rectangle. 
 
As a result, vector C indicates both the size and the 
orientation of the rectangle. 
 
The differential surface vector 
 
For example, consider the very small rectangular surface 
resulting from two differential displacement vectors, say d  
and dm . 
 
 dm  

d  

 x ds d dm=  
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For example, consider the situation if d dx=  and dm dy= : 
 

( )
 x 

xx y

z

ds dx dy
a a dx dy

a dx dy
ˆ ˆ

ˆ

=

=

=

 

 
In other words the differential surface element has an area 
equal to the product dx dy,  and a normal vector that points in 
the ˆ za  direction. 
 
The differential surface vector ds  specifies the size and 
orientation of a small (i.e., differential) patch of area, located 
on some arbitrary surface S. 
 
We will use the differential surface vector in evaluating surface 
integrals of the type: 
 

( )sr
S

ds⋅∫∫A  
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The Differential Surface 
Vector for  

Coordinate Systems 
 
Given that  x ds d dm= , we can determine the differential 
surface vectors for each of the three coordinate systems. 
 
 
 
 
 
 
 
 
 
 
Cartesian 
 

x 

x 

x 

ˆ

ˆ

ˆ

x x

y y

z z

ds dy dz a dy dz
ds dz dx a dx dz

ds dx dy a dx dy

= =

= =

= =

 

 
We shall find that these differential surface vectors define a 
small patch of area on the surface of flat plane.

dm

d

 x ds d dm=
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Cylindrical 
 

x 

x 

x 

ˆ

ˆ

ˆz z

ds d dz a d dz

ds dz dp a d dz

ds d d a d d

ρ ρ

φ φ

φ ρ φ

ρ

ρ φ ρ ρ φ

= =

= =

= =

 

 
We shall find that dsρ  describes a small patch of area on the 
surface of a cylinder, dsφ  describes a small patch of area on 
the surface of a half-plane, and zds  again describes a small 
patch of area on the surface of a flat plane. 

 
Spherical 
 

2x sin

x sin

x 

ˆ

ˆ

ˆ

r rds d d a r d d
ds d dr a r dr d
ds dr d a r dr d

θ θ

φ φ

θ φ θ θ φ

φ θ φ

θ θ

= =

= =

= =

 

 
We shall find that rds  describes a small patch of area on the 
surface of a sphere, dsθ  describes a small patch of area on the 
surface of a cone, and dsφ  again describes a small patch of area 
on the surface of a half plane. 
 



9/9/2004 The Surface Integral.doc 1/5  

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Surface Integral 
 
An important type of vector integral that is often quite useful 
for solving physical problems is the surface integral: 
 
 

 
 

 
( )s

S
r ds⋅∫∫A  

 
 
Some important things to note: 
 

*  The integrand is a scalar function. 
 
*  The integration is over two dimensions. 
 
*  The surface S is an arbitrary two-dimensional surface in 

a three-dimensional space. 
 

*  The position vector sr  denotes only those points that lie 
on surface S.  Therefore, the value of this integral only 
depends on the value of vector field ( )rA  at the points 
on this surface. 
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Q: How are differential surface vector ds  and
surface S related? 

 

 
A: The differential vector ds  describes a 
differential surface area at every point on S.  

 
 
 
 
 

 

ds

S 
 
 
 
As a result, the differential surface vector ds  is normal (i.e., 
orthogonal) to surface S at every point on S.  
 

Q: So what does the scalar integrand ( )sr d⋅A s  mean? 
What is it that we are actually integrating?  
 
A:  Essentially, the surface integral integrates (i.e., “adds 
up”) the values of a scalar component of vector field ( )rA  
at each and every point on surface S.  This scalar 
component of vector field ( )rA  is the projection of ( )srA  
onto a direction perpendicular (i.e., normal) to the surface 
S. 
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First, I must point out that the notation ( )srA  is non-
standard.  Typically, the vector field in the surface 
integral is denoted simply as ( )rA .  I use the notation 

( )srA  to emphasize that we are integrating the values 
of the vector field ( )rA  only at points that lie on 
surface S, and the points that lie on surface S are 
denoted by position vector sr . 
 
In other words, the values of vector field ( )rA  at 
points that do not lie on the surface (which is just 
about all of them!) have no effect on the integration.  
The integral only depends on the value of the vector 
field as we move over surface S—we denote these 
values as ( )srA . 

 
 
Moreover, the surface integral depends on only one component 
of ( )srA ! 
 
Q:  On just what component of ( )srA  does the integral 
depend? 
 
A:  Look at the integrand ( )sr ds⋅A  --we see it involves the dot 
product!  Thus, we find that the scalar integrand is simply the 
scalar projection of ( )srA  onto the differential vector ds .  As a 
result, the integrand depends only the component of ( )srA  that 
lies in the direction of ds --and ds  always points in the 
direction orthogonal to surface S! 
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To help see this, first note that every vector ( )srA  can be 
written in terms of a component tangential to the surface (i.e, 

ˆ( )sA r a ), and a component that is normal (i.e., orthogonal) to 
the surface (i.e, ˆ( )n s nA r a ): 
 

ˆ( ) (nsr a A+

 

) ˆ( )s s nAr r aA =  
 

 
 
 
 
 
 
 
 
 
 

( )rA
ˆ( )n nA r a

ˆ( )A r a

S 

ˆ ˆ 0na a⋅ =

 
We note that the differential surface vector ds  can be written 
in terms of its magnitude ( ds ) and direction ( ) as: n̂a
 

n̂ds a ds=  
 

For example, for 2ˆ sinr rds a r d dθ θ φ= , we can say 
2 sinrds r d dθ θ φ=  and . ˆ ˆn ra a=
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As a result we can write: 
 

( )r n

n

n

a A r

A rr a

a a a

ˆ( )

ˆ( )

( )

( )

ˆ( ) ˆ ˆ

+

+

n

n

n n

S S

n
S

n
S

S
n

ds dA r

A

a

a

A r a

A

A r

s

a ds

ds

dsr

A ˆ

ˆ

ˆ

ˆ

)

)

(

(

⎡ ⎤⋅ = ⋅⎣ ⎦

⎡ ⎤= + ⋅⎣ ⎦

⎡ ⎤= ⋅ ⋅⎣ ⎦

=

∫∫ ∫∫

∫∫

∫∫

∫∫

 

 
Note if vector field ( )rA  is tangential to the surface at every 
point, then the resulting surface integral will be zero. 
 

S 

 
 
 
 
 
 
 
 
Although S represents an
convoluted, we will study 
ds  will correspond to one
from Cartesian, cylindric
 
 

The Univ. of Kansas Dept. of EECS 

ds
A 

y surface, no matter how complex or 
only basic surfaces.  In other words, 
 of the differential surface vectors 

al, or spherical coordinate systems. 
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The Surface S 
 
In this class, we will limit ourselves to studying only those 
surfaces that are formed when we change the location of a 
point by varying two coordinate parameters.  In other words, 
the other coordinate parameters will remain fixed.   
 
 

Mathematically, therefore, a surface is described by: 
 

1 equality (e.g., x =2 or r =3) 
 

AND 
 

2 inequalities (e.g., -1 < y < 5 and -2 < z < 7, or       
0 <  θ  < π/2 and 0 <  φ  < π) 

 
 

Likewise, we will need to explicitly determine the differential 
surface vector ds  for each contour. 
 
We will be able to describe a surface for each of the 
coordinate values we have studied in this class! 
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Cartesian Coordinate Surfaces 

2y

 
The single equation z =3 specifies all points P(x,y,z) with a 
coordinate value z =3.  These points form a plane that is parallel 
to the x-y plane. 
 

zds

z 

y 

x 

 
 
 
 
 
 
 
 
 
 
 

*  As we move across this plane, the coordinate values of x 
and y will vary.  Thus, the size of this rectangular plane is 
defined by two inequalities -- 

. 1 2 1   and   x x yc x c c y c≤ ≤ ≤ ≤

 
*  Note the differential surface vector zds  (or zds− ) is 

orthogonal to every point on this plane. 
 
*  Similarly, the equations y =-2 or x =6 describe planes 

orthogonal to the x-z plane and the y-z plane, respectively.  
Likewise, the differential surface vectors yds  and xds are 
orthogonal to each point on these planes.   
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Summarizing the Cartesian surfaces: 
 
 
 
1.  Flat plane parallel to the y-z plane. 

 
= ≤ ≤ ≤ ≤1 2 1 2x y y z zx c c y c c z c  

 
= ± = ± ˆx xds ds a dy dz  

 
2.  Flat plane parallel to the x-z plane. 

 
≤ ≤ = ≤ ≤1 2 1yx x zc x c y c c z c 2z  

 
= ± = ± ˆy yds ds a dz dx  

 
3.  Flat plane parallel to the x-y plane. 

 
≤ ≤ ≤ ≤ =1 2 1 2 zx x y yc x c c y c z c  

 
= ± = ± ˆz zds ds a dy dx  

 
 
 
 
Cylindrical Coordinate Surfaces 
 
With cylindrical coordinates, we can define surfaces such as 

45φ =  or ρ = 4.  These surfaces, however, are more complex 
than simply planes. 
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For example, the surface denoted by ρ=4 is formed by all points 
with coordinate ρ=4.  In other words, this surface is formed by 
all points that are a distance of 4 units from the z-axis—a 
cylinder ! 

dsρ

z 

y 

x 

 
 
 
 
 
 
 
 
 
 
 
 

*  As we move across this cylinder, the coordinate values of φ 
and z will vary.  Thus, the size of this cylinder is defined by 
two inequalities-- 1 2 1  and  z zc c c zφ φ 2cφ≤ ≤ ≤ ≤

2

. 
 
*  Note a cylinder that completely surrounds the z-axis is 

described by the inequality 0 φ π≤ ≤ .  However, the 
cylinder does not have to be complete!  For example, the 
inequality 0 φ π≤ ≤  defines a half-cylinder, 

 
*  We note the differential surface vector dsρ  (or dsρ− ) is 

orthogonal to this surface at all points. 
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Another surface is defined by the equation 45φ = . This 
surface is formed only from points with coordinate value 

45φ = . The surface is a half-plane that extends outward from 
the z-axis.  
 
 
 
 
 
 
 
 
 
 
 

I see. Sort or like
a big door with a
z-axis hinge! 

z 

y 

dsφ

x 

Note the differential surface vector dsφ  is orthogonal to this 
surface at every point. 
 
The final cylindrical surface that we will consider the type 
formed by the equality z = 2. We know that this forms a flat 
plane that is parallel to the x-y plane.  
 

*  Using the inequalities of Cartesian coordinates, this flat 
plane is rectangular in shape.  However, using cylindrical 
coordinates inequalities, this plane will be shaped like a 
ring or a disk. 

 
* For example, the surface 0,  0 2,  0 2z ρ φ π= ≤ ≤ ≤ ≤  

describes a circular disk of radius 2, lying on the x-y plane, 
and centered at the z-axis: 
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y  
 
 
 
 
 
 
 
 
 
 

Now let’
been pay
Determi
inequalit
this flat

0z

ρ

φ

=

≤ ≤

≤ ≤
2

x 
sas Dept. of EECS 

y 

2 

1 
x 

s see if you’ve 
ing attention!  
ne the two 
ies that define 
 surface. 
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Summarizing our cylindrical surface results: 
 
 

 
1.  Circular cylinder centered around the z-axis. 

 
ρ φ φρ φ= ≤ ≤ ≤ ≤1 2 1 2z zc c c c z c  

 
ρ ρ φ= ± = ± p̂ds ds a d dz  

 
2.  “Vertical” half-plane extending from the  

z-axis. 
 

φρ ρρ φ≤ ≤ = ≤ ≤1 2 1z zc c c c z 2c  
 

φ φ ρ= ± = ± ˆds ds a dz d  
 

3.  Flat plane parallel to the x-y plane. 
 

ρ ρ φ φρ φ≤ ≤ ≤ ≤ =1 2 1 2 zc c c c z c  
 

ρ φ ρ= ± = ± ˆz zds ds a d d  
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Spherical Coordinate Surfaces 
 
The surface defined by 30θ =  is formed only from points with 
coordinate 30θ = .  This surface is a cone!  The apex of the 
cone is centered at the origin, and its axis of rotation is the z-
axis. 
 z 

dsθ

y 

x 

 
 
 
 
 
 
 
 
 
 
 
 
 

*  Note that the differential surface vector dsθ  is normal to 
this surface at every point.  

 
* Just like a cylinder, a complete cone is defined by the 

inequality 0 2φ π≤ ≤ .  Alternatively, for example, the 
equation 3 2π φ π≤ ≤  defines a quarter cone. 
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Say instead our equality equation is r =3. This defines a surface 
formed from all points a distance of 3 units from the origin—a 
sphere of radius 3 !  
 

*  This sphere is centered at the origin. 
 
* The differential surface vector rds  is normal to this sphere 

at all points on the surface. 
 
*  If we wish to define a complete sphere, our inequalities 

must be: 
0       and      0 2θ π φ≤ < ≤ < π  

 
    otherwise, we will be defining some subsection of a 

spherical surface (e.g., the “Northern Hemisphere”.). 
 
 
Finally, we know that the equation 45φ =  defines a vertical 
half-plane, extending from the z-axis.  
 
However, using spherical inequalities, this vertical plane will be 
in the shape of a semi-circle (or some section thereof), as 
opposed to rectangular (with cylindrical inequalities). 
 

2
πφ =

z 

y 

x 
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Summarizing the spherical surfaces: 
 

 
 
1.  Sphere centered at the origin. 

 
θ θ φ φθ φ= ≤ ≤ ≤ ≤1 2 1 2rr c c c c c  

 
θ θ φ= ± = ± 2ˆ sinr rds ds a r d d  

 
2.  A cone with apex at the origin and aligned 

with the z-axis. 
 

θ φ φθ φ≤ ≤ = ≤ ≤1 2 1r rc r c c c c 2 
 

θ θ θ φ= ± = ± ˆ sinds ds a r d dr  
 

3.  “Vertical” half-plane extending from the  
z-axis. 

 
φθ θθ φ≤ ≤ ≤ ≤ =1 2 1 2r rc r c c c c  

 
φ φ θ= ± = ± ˆds ds a r dr d  
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Integrals with  
Complex Surfaces 

 
Similar to contours, we can form complex surfaces by combining 
any of the seven simple surfaces that can easily be formed with 
Cartesian, cylindrical or spherical coordinates.  For example, we 
can define 6 planes to form the surface of a cube centered at 
the origin:  
 
 
 
 
 
 
 
 
 
The cube surface S is thus described as the sum of the six 
sides: 

1 2 3 5 64S S S S S S S= + + + + +  
 

Therefore, a surface integration over S can be evaluated as: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 3

4 5 6

s s s s
S S S S

s s s
S S S

r ds r ds r ds r ds

r ds r ds r ds

⋅ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

A A A A

A A A
 

x 

y 

z 

2 

2 

2 
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This is a great example for considering the direction of 
differential surface vector ds .   
 
Recall there are two differential surface vectors that are 
orthogonal to every surface:  the first is simply the opposite of 
the second.   
 
For example, if we were performing a surface integration over 
the top surface of this  cube (i.e., z=1 plane) , we would typically 
use ˆz zds ds a dx dy= = .   
 
However, we could also use the differential surface vector 

ẑzds ds a dx dy= − =− ! 
 

Q: How would the results of the two integrations 
differ? 
 
A:  By a factor of –1 !! 
 

We find that a surface integration using ds  is related to 
the surface integration using ds−  as: 
 
 

( ) ( ) ( )s s
S S

r ds r ds⋅ − = − ⋅∫∫ ∫∫A A  
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The surface of a cube is an example of a closed surface. A 
closed surface is a surface that completely surrounds some 
volume.  You cannot get from one side of a closed surface to 
the other side without passing through the surface.  
 
In other words, if your beverage is surrounded by a closed 
surface, better go get your can opener! 
 
In electromagnetics, we often define ds  as the direction 
pointing outward from a closed surface. 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, we would use differential line vectors of opposite 
directions for each of the pair of side surfaces (left and 
right), as well as for the front and back surfaces. 
 
 

So, for example, the differential
surface vector for the top
surface (z=1) would be: 
 

ˆz zds ds a dx dy= = , 
 

while on the bottom (z=-1) we 
would use : 
 

ˆz zds ds a dx dy= − = −  

ẑa dx dy

ẑa dx dy−

Regardless if the surface is open or 
closed, the direction of ds  must 
remain consistent across an entire 
complex surface! 
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Steps for Analyzing 
Surface Integrals 

 
We wish to evaluate an integral of the form: 
 

( )s
S

r ds⋅∫∫A  

To successfully accomplish this, simply follow these steps: 
 

 
Step 1:  Determine the 1 equality, 2 inequalities, and 

ds  for the surface S (be careful of 
direction!). 

 
Step 2:  Evaluate the dot product ( )sr ds⋅A .  
  
Step 3:  Write the resulting scalar field using the same 

coordinate system as surface S. 
 

Step 4:  Evaluate the scalar field using the coordinate 
equality that described surface S. 

 
Step 5: Determine the limits of integration from the 

inequalities that describe surface S. 
 

Step 6:  Integrate the remaining function of two 
coordinate variables. 
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Example: The Surface 
Integral 

 
Consider the vector field: 
 

( ) x̂r x a=A  
 

Say we wish to evaluate the surface integral: 
 

( )s
S

r ds⋅∫∫A  

 
where S is a cylinder whose axis is aligned with the z-axis and is 
centered at the origin.  This cylinder has a radius of 1 unit, and 
extends 1 unit below the x-y plane and one unit above the x-y 
plane.  In other words, the cylinder has a height of 2 units. 
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This is a complex, closed surface.  We will define the top of the 
cylinder as surface S1, the side as S2, and the bottom as S3.  
The surface integral will therefore be evaluated as: 
 

( ) ( ) ( ) ( )
1 2 3

s s 1 s 2 s 3
S S S S

r ds r ds r ds r ds⋅ = ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫∫ ∫∫A A A A  

 
 

Step 1:  Determine ds  for the surface S. 
 
Let’s define ds  as pointing in the direction outward from the 
closed surface. 
 
S1 is a flat plane parallel to the x-y plane, defined as: 
 

0 1 0 2 1zρ φ π≤ ≤ ≤ ≤ =  
 

and whose outward pointing ds  is: 
 

1 z zds ds a p dp dˆ φ= =  
 

S2 is a circular cylinder centered on the z- axis, defined as: 
 

1 0 2 1 1zρ φ π= ≤ ≤ − ≤ ≤  
 

and whose outward pointing ds  is: 
 

2ds ds a p dz dˆρ ρ φ= =  
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S3 is a flat plane parallel to the x-y plane, defined as: 
 

0 1 0 2 1zρ φ π≤ ≤ ≤ ≤ = −  
 

and whose outward pointing ds  is: 
 

3 z zds ds a p dp dˆ φ= − = −  
 
Step 2:  Evaluate the dot product ( )sr ds⋅A . 
 

( )
( )
ˆ ˆ1

0
0
x zsr ds x d d

x d
a a

d
ρ ρ φ

ρ ρ φ

⋅⋅ =

=

=

A
 

 
( )

( )
ˆ ˆ2

cos
x ps a ar ds x dz d

x dz d
ρ φ

ρ φφ=

⋅⋅ =A
 

 
( )

( )
ˆ ˆ3

0
0
x zsr ds x d d

d
a

x d
a ρ ρ φ

ρ ρ φ

⋅ = −

= −

⋅

=

A
 

 
Look! Vector field ( )A r is tangential to surface S1 and S3 for all 
points on surface S1 and S3 !  Therefore: 
 

( ) ( ) ( ) ( )

( )

( )

1 2 3

2

2

1 2 3

2

2

0 0

s s s s
S S S S

s
S

s
S

r ds r ds r ds r ds

r ds

r ds

⋅ = ⋅ + ⋅ + ⋅

= + ⋅ +

= ⋅

∫∫ ∫∫ ∫∫ ∫∫

∫∫

∫∫

A A A A

A

A
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Step 3:  Write the resulting scalar field using the same 
coordinate system as ds . 
 
The differential vector dsρ  is expressed in cylindrical 
coordinates, therefore we must write the scalar integrand using 
cylindrical coordinates.   
 
We know that: 
 

cosx ρ φ=  
Therefore: 

( ) ( )
( )

2

2 2

cos
cos cos
cos

sr ds x dz d
dz d

dz d

φ ρ φ

ρ φ φ ρ φ

ρ φ φ

⋅ =

=

=

A
 

 
Step 4:  Evaluate the scalar field using the coordinate equality 
that described surface S. 
 
Every point on S2 has the coordinate value 1.ρ =   Therefore: 
 

( ) 2 2
2

2 2

2

cos
1 cos
cos

sr ds dz d
dz d

dz d

ρ φ φ

φ φ

φ φ

⋅ =

=

=

A
 

 
Step 5:  Determine the limits of integration from the 
inequalities that describe surface S. 
 
For S2  we know that 0 2 1 1zφ π≤ ≤ − ≤ ≤ . 
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Therefore: 

( ) ( )
2

2 1
2

2
0 1

coss s
S S

r ds r ds dz d
π

φ φ
−

⋅ = ⋅ =∫∫ ∫∫ ∫ ∫A A  

 
Step 6:  Integrate the remaining function of two coordinate 
variables. 

 
Using all the results determined above, the surface integral 
becomes: 
 

( )

( ) ( )( )

2 1
2

0 1
2 1

2

0 1

cos

cos

0 1 1

s
S

r ds dz d

d dz

π

π

φ φ

φ φ

π

−

−

⋅ =

=

= − − −

=

∫∫ ∫ ∫

∫ ∫

A

2π
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The Differential Volume 
Element 

 
Consider a rectangular cube, whose three sides can be defined 
by three directed distances, say A, B, and C. 
 
 
 
 
 
 
 
 
 
 
 

 
It is evident that the lengths of each side of the rectangular 
cube are , , and A B C , such that the volume of this 
rectangular cube can be expressed as: 
 

V = A B C  
 

Consider now what happens if we take the triple product of 
these three vectors: 
 

ˆ BCx sinn θ⋅ = ⋅A B C A B Ca  
 

However, we note that .BCsin sin90 1 0θ = = , and that ˆ ˆn A=a a  (i.e., 
vector ×B C  points in the same direction as vector A! ).  

B 

A 

C 
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 Using the fact that ˆ=A A Aa , we then find the result: 
 

ˆ

ˆ

ˆ ˆ

BCx sinn

A

A A

θ⋅ = ⋅

= ⋅

= ⋅

=

A B C A B C
A B C
A B C
A B C

a
a
a a

 

 
Look what this means, the volume of a cube can be expressed in 
terms of the triple product! 
 

V = ⋅ × =A B C A B C  
 
Consider now a rectangular volume formed by three orthogonal 
line vectors (e.g., , , dx dy dz  or , , d d dzρ φ ). 
 
 
 
 
 
 
 
 
 
The result is a differential volume, given as: 
 

 x dv d dm dn= ⋅  
 

dm

d

dn
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For example, for the Cartesian coordinate system: 
 
 

 x dv dx dy dz
dx dy dz

= ⋅

=
 

 
 
and for the cylindrical coordinate system: 
 
 

d  x dv d dz
d d dz
ρ φ

ρ ρ φ
= ⋅

=
 

 
 
and also for the spherical coordinate system: 
 
 

2

d  x d
sin

dv dr
r dr d d

θ φ

θ φ θ

= ⋅

=
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The Volume V 
 
As we might expect from out knowledge about how to specify a 
point P (3 equalities), a contour C (2 equalities and 1 inequality), 
and a surface S (1 equality and 2 inequalities), a volume V is 
defined by 3 inequalities.   
 
Cartesian 
 
The inequalities: 
 

1 2 1 2 1 2x x y y z zc x c c y c c z c≤ ≤ ≤ ≤ ≤ ≤  
 

define a rectangular volume, whose sides are parallel to the x-y, 
y-z, and x-z planes.   
 
The differential volume dv  used for constructing this Cartesian 
volume is: 
 

dv dx dy dz=  
 
Cylindrical 
 
The inequalities: 
 

1 2 1 2 1 2z zc c c c c z cρ ρ φ φρ φ≤ ≤ ≤ ≤ ≤ ≤  
 

defines a cylinder, or some subsection thereof (e.g. a tube!). 
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The differential volume dv  is used for constructing this 
cylindrical  volume is: 
 

dv d d dzρ ρ φ=  
 
Spherical 
 
The equations: 
 

1 2 1 2 1 2r rc r c c c c cθ θ φ φθ φ≤ ≤ ≤ ≤ ≤ ≤  
 

defines a sphere, or some subsection thereof (e.g., an “orange 
slice” !).   
 
The differential volume dv  used for constructing this spherical  
volume is: 

2 sindv r dr d dθ θ φ=  
 
 
*  Note that the three inequalities become the limits of 
integration for a volume integral.  For example, integrating over 
a spherical volume would result in an integral of the form: 
 

2 2 2

1 1 1

2( ) ( ) sin
r

r

c c c

V c c c
g r dv g r r dr d d

φ θ

φ θ

θ θ φ=∫∫∫ ∫ ∫ ∫  

 
For this example, if the scalar field ( )g r  is not expressed in 
terms of spherical coordinates, it must first be transformed 
before the integral can be explicitly evaluated. 
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*  Note also that we can construct complex volumes by 
combining the simple volumes discussed here. 
  
 

1 2 3 4V V V V V= + + +  

V3 V4 V2 

V1 
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Example: The Volume 
Integral 

 
Let’s evaluate the volume integral: 
 

( )
V

g r dv∫∫∫  

where ( ) 1g r =  and the volume V  is a sphere with radius R. 
 
In other words, the volume V is described as: 
 

0

0

0 2

r R

θ π

φ π

≤ ≤

≤ ≤

≤ ≤

 

 
And thus we use for the differential volume dv: 
 

2 sindv dr d d r dr d dθ φ θ θ φ= ⋅ × =  
 

Therefore: 
 



9/9/2004 Example The Volume Integral.doc 2/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

( )
2

2

0 0 0
2

2

0 0 0
3

3

sin

sin

2 (2)
3

4
3

R

V
R

g r dv r dr d d

d d r dr

R

R

π π

π π

θ θ φ

φ θ θ

π

π

=

=

=

=

∫∫∫ ∫ ∫ ∫

∫ ∫ ∫
 

 
Hey look! The answer is the volume (e.g., in m3) of a sphere! 
 
Now, this result provided the numeric volume of V  only 
because ( ) 1g r = .  We find that the total volume of any space 
V can be determined this way: 
 
 

Volume of (1)
V

V dv= ∫∫∫  

 
 
Typically though, we find that ( ) 1g r ≠ , and thus the volume 
integral does not provide the numeric volume of space V . 
 
Q:  So what’s the volume integral even good for?  

 
A:  Generally speaking, the scalar function ( )g r  will be a  
density  function, with units of things/unit volume.  
Integrating ( )g r  with the volume integral provides us the 
number of things within the space V ! 
 



9/9/2004 Example The Volume Integral.doc 3/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
For example, let’s say ( )g r  
describes the density of a big 
swarm of insects, using units of 
insects/m3  (i.e., insects are the 
things).  Note that ( )g r  must 
indeed a function of position, as 
the density of insects changes at 
different locations throughout 
the swarm.   
 
Now say we want to know the total number of insects within 
the swarm, which occupies some space V. We can determine 
this by simply applying the volume integral! 
 
 

( )number of insects in swarm 
V

g r dv= ∫∫∫  

 

where space V completely encloses the insect swarm. 
 


