2.4 Orthogonal Coordinate Systems (pp.16-33)

1)
2)

Q:

A:
1.
2.
3.

Definition:).
A. Coordinates

Point $P(0,0,0)$ is always the origin.

HO: Cartesian Coordinates

HO: Cylindrical Coordinates

HO: Spherical Coordinates
B. Coordinate Transformations

HO: Coordinate Transformations

Example: Coordinate Transformations
C. Base Vectors
*
*

HO: Base Vectors

HO: Cartesian Base Vectors
D. Vector Expansion using Base Vectors

Q:

A:
e.9.,

$$
B=B_{1} \hat{a}_{1}+B_{2} \hat{a}_{2}+B_{3} \hat{a}_{3}
$$

or

$$
\boldsymbol{c}=C_{x} \hat{a}_{x}+C_{y} \hat{a}_{y}+C_{z} \hat{a}_{z}
$$

HO: Vector Expansion using Base Vectors
E. Spherical and Cylindrical Base Vectors

HO: Spherical Base Vectors

HO: Cylindrical Base Vectors

F. Vector Algebra and Vector Expansions

HO: Vector Algebra using Orthonormal Base Vectors

G. The Vector Field
*
*
*
*

This means that the 3 scalar components of vector field are each a scalar field!

HO: Vector Fields

HO: Expressing Vector Fields with Coordinate Systems
H. The Position Vector

We call this directed distance the position vector.

HO: The Position Vector

HO: Applications of the Position Vector

HO: Vector Field Notation

HO: A Gallery of Vector Fields

Cartesian Coordinates

You're probably familiar with Cartesian coordinates. In twodimensions, we can specify a point on a plane using two scalar values, generally called x and y.

We can extend this to three-dimensions, by adding a third scalar value z.

Note the coordinate values in the Cartesian system effectively represent the distance from a plane intersecting the origin.

For example, $x=3$ means that the point is 3 units from the $y-z$ plane (i.e., the $x=0$ plane).

Likewise, the y coordinate provides the distance from the $x-z$ ($y=0$) plane, and the z coordinate provides the distance from the $x-y(z=0)$ plane.

Once all three distances are specified, the position of a point is uniquely identified.

Cylindrical Coordinates

You're probably also familiar with polar coordinates. In twodimensions, we can also specify a point with two scalar values, generally called ρ and ϕ.

We can extend this to three-dimensions, by adding a third scalar value z. This method for identifying the position of a point is referred to as cylindrical coordinates.

Note the physical significance of each parameter of cylindrical coordinates:

1. The value ρ indicates the distance of the point from the z axis ($0 \leq \rho<\infty$).
2. The value ϕ indicates the rotation angle around the z-axis ($0 \leq \phi<2 \pi$). precisely the same as the angle ϕ used in spherical coordinates.
3. The value z indicates the distance of the point from the $x-y(z=0)$ plane $(-\infty<z<\infty)$, precisely the same as the coordinate z used in Cartesian coordinates

Once all three values are specified, the position of a point is uniquely identified.

Spherical Coordinates

* Geographers specify a location on the Earth's surface using three scalar values: longitude, latitude, and altitude.
* Both longitude and latitude are angular measures, while altitude is a measure of distance.
* Latitude, longitude, and altitude are similar to spherical coordinates.
* Spherical coordinates consist of one scalar value (r), with units of distance, while the other two scalar values (θ, ϕ) have angular units (degrees or radians).

1. For spherical coordinates, $r(0 \leq r<\infty)$ expresses the distance of the point from the origin (i.e., similar to altitude).
2. Angle $\theta(0 \leq \theta \leq \pi)$ represents the angle formed with the z-axis (i.e., similar to latitude).
3. Angle $\phi(0 \leq \phi<2 \pi)$ represents the rotation angle around the z-axis, precisely the same as the cylindrical coordinate ϕ (i.e., similar to longitude).

Thus, using spherical coordinates, a point in space can be unambiguously defined by one distance and two angles.

Coordinate

Transformations

Say we know the location of a point, or the description of some scalar field in terms of Cartesian coordinates (e.g., $T(x, y, z)$).

What if we decide to express this point or this scalar field in terms of cylindrical or spherical coordinates instead?

Q: How do we accomplish this coordinate transformation?

A: Easy! We simply apply our knowledge of trigonometry.

We see that the coordinate values z, ρ, r, and θ are all variables of a right triangle! We can use our knowledge of trigonometry to relate them to each other.

In fact, we can completely derive the relationship between all six independent coordinate values by considering just two very important right triangles! \rightarrow Hint: Memorize these 2 triangles!!!

It is evident from the triangle that, for example:

$$
\begin{aligned}
& z= \\
& \rho= \\
& r= \\
& \theta=
\end{aligned}
$$

Likewise, the coordinate values x, y, ρ, and ϕ are also related by a right triangle!

From the resulting triangle, it is evident that:

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& \rho=\sqrt{x^{2}+y^{2}} \\
& \phi=\tan ^{-1}\left[\frac{y}{x}\right]=\cos ^{-1}\left[\frac{x}{\rho}\right]=\sin ^{-1}\left[\frac{y}{\rho}\right]
\end{aligned}
$$

Combining the results of the two triangles allows us to each coordinate set in terms of each other:

Cartesian and Cylindrical

$$
\begin{array}{ll}
x=\rho \cos \phi & \rho=\sqrt{x^{2}+y^{2}} \\
y=\rho \sin \phi & \phi=\tan ^{-1}\left[\frac{y}{x}\right] \quad \text { (be careful !) } \\
z=z & z=z
\end{array}
$$

Cartesian and Spherical

$$
x=r \sin \theta \cos \phi
$$

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \theta=\cos ^{-1}\left[\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right] \\
& \phi=\tan ^{-1}\left[\frac{y}{x}\right]
\end{aligned}
$$

Cylindrical and Spherical

$$
\begin{aligned}
& \rho=r \sin \theta \\
& \phi=\phi \\
& z=r \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& r=\sqrt{\rho^{2}+z^{2}} \\
& \theta=\tan ^{-1}\left[\frac{\rho}{z}\right] \\
& \phi=\phi
\end{aligned}
$$

Example: Coordinate

Transformations

Say we have denoted a point in space (using Cartesian Coordinates) as $P(x=-3, y=-3, z=2)$.

Let's instead define this same point using cylindrical coordinates ρ, ϕ, z :

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}}=\sqrt{(-3)^{2}+(-3)^{2}}=3 \sqrt{2} \\
& \phi=\tan ^{-1}\left[\frac{y}{x}\right]=\tan ^{-1}\left[\frac{-3}{-3}\right]=\tan ^{-1}[1]=45^{\circ} \\
& z=2
\end{aligned}
$$

Therefore, the location of this point can perhaps be defined also as $P\left(\rho=3 \sqrt{2}, \phi=45^{\circ}, z=2\right)$.

> Q: Wait! Something has gone horribly wrong. Coordinate $\phi=45^{\circ}$ indicates that point P is located in quadrant I, whereas the coordinates $x=-3, y=-3$ tell us it is in fact in quadrant III!

A: The problem is our interpretation of the inverse tangent!

Remember that $0 \leq \phi<360^{\circ}$, so that we must do a four quadrant inverse tangent. Your calculator likely only does a two quadrant inverse tangent (i.e., $90 \leq \phi \leq-90^{\circ}$), so be careful!

Therefore, if we correctly find the coordinate ϕ :

$$
\phi=\tan ^{-1}\left[\frac{y}{x}\right]=\tan ^{-1}\left[\frac{-3}{-3}\right]=225^{\circ}
$$

The location of point P can be expressed as either $P(x=-3, y=-3$, $z=2)$ or $P\left(\rho=3 \sqrt{2}, \phi=225^{\circ}, z=2\right)$.

We can also perform a coordinate transformation on a scalar field. For example, consider the scalar field (i.e., scalar function):

$$
g(\rho, \phi, z)=\rho^{3} \sin \phi z
$$

Lets try to rewrite this function in terms of Cartesian coordinates. We first note that since $\rho=\sqrt{x^{2}+y^{2}}$,

$$
\rho^{3}=\left(x^{2}+y^{2}\right)^{3 / 2}
$$

Now, what about $\sin \phi$? We know that $\phi=\tan ^{-1}[y / x]$, thus we might be tempted to write:

$$
\sin \phi=\sin \left[\tan ^{-1}\left[\frac{y}{x}\right]\right]
$$

Although technically correct, this is one ugly expression. We can instead turn to one of the very important right triangles that we discussed earlier:

From this triangle, it is apparent that:

$$
\sin \phi=\frac{y}{\rho}=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

As a result, the scalar field can be written in Cartesian coordinates as:

$$
\begin{aligned}
g(x, y, z) & =\left(x^{2}+y^{2}\right)^{3 / 2} \frac{y}{\sqrt{x^{2}+y^{2}}} z \\
& =\left(x^{2}+y^{2}\right) y z
\end{aligned}
$$

Remember, although the scalar fields:
and:

$$
\begin{gathered}
g(x, y, z)=\left(x^{2}+y^{2}\right) y z \\
g(\rho, \phi, z)=\rho^{3} \sin \phi z
\end{gathered}
$$

look very different, they are in fact exactly the same functions-only expressed using different coordinate variables.

For example, if you evaluate each of the scalar fields at the point described earlier in the handout, you will get exactly the same result!

$$
\begin{array}{r}
g(x=-3, y=-3, z=2)=-108 \\
g\left(\rho=3 \sqrt{2}, \phi=225^{\circ}, z=2\right)=-108
\end{array}
$$

Base Vectors

A: It is very important that you understand that coordinates only allow us to specify position in 3-D space. They cannot be used to specify direction!

The most convenient way for us to specify the direction of a vector quantity is by using a well-defined orthornormal set of vectors known as base vectors.

Recall that an orthonormal set of vectors, say $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$, have the following properties:

1. Each vector is a unit vector:

$$
\hat{a}_{1} \cdot \hat{a}_{1}=\hat{a}_{2} \cdot \hat{a}_{2}=\hat{a}_{3} \cdot \hat{a}_{3}=1
$$

2. Each vector is mutually orthogonal:

$$
\hat{a}_{1} \cdot \hat{a}_{2}=\hat{a}_{2} \cdot \hat{a}_{3}=\hat{a}_{3} \cdot \hat{a}_{1}=0
$$

Additionally, a set of base vectors $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ must be arranged such that:

An orthonormal set with this property is known as a righthanded system.

All base vectors $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ must form a right-handed, orthonormal set.

Recall that we use unit vectors to define direction. Thus, a set of base vectors defines three distinct directions in our 3D space!

Q: But, what three directions do we use?? I remember that you said that there are an infinite number of possible orientations of an orthonormal set!!

A: We will define several systematic, mathematically precise methods for defining the orientation of base vectors. Generally speaking, we will find that the orientation of these base vectors will not be fixed, but will in fact vary with position in space (i.e., as a function of coordinate values)!

Essentially, we will define at each and every point in space a different set of basis vectors, which can be used to uniquely define the direction of any vector quantity at that point!

Q: Good golly! Defining a different set of base vectors for every point in space just seems dad-gum confusing. Why can't we just fix a set of base vectors such that their orientation is the same at all points in space?

A: We will in fact study one method for defining base vectors that does in fact result in an othonormal set whose orientation is fixed-the same at all points in space (Cartesian base vectors).

However, we will study two other methods where the orientation of base vectors is different at all points in space (spherical and cylindrical base vectors). We use these two methods to define base vectors because for many physical problems, it is actually easier and wiser to do so!

For example, consider how we define direction on Earth: North/South, East/West, U/Down.

Each of these directions can be represented by a unit vector, and the three unit vectors together form a set of base vectors.

Think about, however, how these base vectors are oriented! Since we live on the surface of a sphere (i.e., the Earth), it makes sense for us to orient the base vectors with respect to the spherical surface.

What this means, of course, is that each location on the Earth will orient its "base vectors" differently. This orientation is thus different for every point on Earth-a
 method that makes perfect sense!

Cartesian Base Vectors

As the name implies, the Cartesian base vectors are related to the Cartesian coordinates.

Specifically, the unit vector \hat{a}_{x} points in the direction of increasing x. In other words, it points away from the $y-z(x=0)$ plane.

Similarly, \hat{a}_{y} and \hat{a}_{z} point in the direction of increasing y and z, respectfully.

We said that the directions of base vectors generally vary with location in space-Cartesian base vectors are the exception! Their directions are the same regardless of where you are in space.

Vector Expansion using Base Vectors

Having defined an orthonormal set of base vectors, we can express any vector in terms of these unit vectors:

$$
\boldsymbol{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}
$$

Note therefore that any vector can be written as a sum of three vectors!

* Each of these three vectors point in each of the three orthogonal directions $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$.
* The magnitude of each of these three vectors are determined by the scalar values A_{x}, A_{y}, and A_{z}.
* The values A_{x}, A_{y}, and A_{z} are called the scalar components of vector \boldsymbol{A}.
* The vectors $A_{x} \hat{a}_{x}, A_{y} \hat{a}_{y}, A_{z} \hat{a}_{z}$ are called the vector components of A.

Q: What the heck are scalar the components A_{x}, A_{y}, and A_{z}, and how do we determine them ??

A: Use the dot product to evaluate the expression above!

Begin by taking the dot product of the above expression with unit vector \hat{a}_{x} :

$$
\begin{aligned}
\boldsymbol{A} \cdot \hat{a}_{x} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right) \cdot \hat{a}_{x} \\
& =A_{x} \hat{a}_{x} \cdot \hat{a}_{x}+A_{y} \hat{a}_{y} \cdot \hat{a}_{x}+A_{z} \hat{a}_{z} \cdot \hat{a}_{x}
\end{aligned}
$$

But, since the unit vectors are orthogonal, we know that:

$$
\hat{a}_{x} \cdot \hat{a}_{x}=1 \quad \hat{a}_{y} \cdot \hat{a}_{x}=0 \quad \hat{a}_{z} \cdot \hat{a}_{x}=0
$$

Thus, the expression above becomes:

$$
A_{x}=\boldsymbol{A} \cdot \hat{a}_{x}
$$

In other words, the scalar component A_{x} is just the value of the dot product of vector \boldsymbol{A} and base vector \hat{a}_{x}. Similarly, we find that:

$$
A_{y}=\boldsymbol{A} \cdot \hat{a}_{y} \quad \text { and } \quad A_{z}=\boldsymbol{A} \cdot \hat{a}_{z}
$$

Thus, any vector can be expressed specifically as:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\boldsymbol{A} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\boldsymbol{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\boldsymbol{A} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}
\end{aligned}
$$

We can demonstrate this vector expression geometrically.

Note the length (ie., magnitude) of vector \boldsymbol{A} can be related to the length of vector $A_{y} \hat{a}_{y}$ using trigonometry:

$$
A_{y}=|\boldsymbol{A}| \cos \theta_{A y}
$$

$$
{\underset{\hat{a}}{x}}_{\underbrace{}_{i} A_{y} \hat{a}_{y}}^{\theta_{A y}} \mathrm{~A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}
$$

Likewise, we find that the scalar component A_{x} is related to $|\boldsymbol{A}|$ as:

From this geometric interpretation, we can see why we often refer to the scalar component A_{x} as the scalar projection of vector \boldsymbol{A} onto vector (direction) \hat{a}_{x}.

Likewise, we often refer to the vector component $A_{x} \hat{a}_{x}$ as the vector projection of vector \boldsymbol{A} onto vector (direction) \hat{a}_{x}.

As you may have already noticed, the scalar component A_{x}, which we determined geometrically, can likewise be expressed in terms of a dot product!

$$
\begin{aligned}
A_{x} & =|\boldsymbol{A}| \cos \theta_{A x} \\
& =|\boldsymbol{A}|\left|\hat{a}_{x}\right| \cos \theta_{A x} \\
& =\boldsymbol{A} \cdot \hat{a}_{x}
\end{aligned}
$$

Accordingly, we find that the scalar component of vector A are determined by "doting" vector \mathbf{A} with each of the three base vectors $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$:

$$
\begin{aligned}
& A_{x}=\boldsymbol{A} \cdot \hat{a}_{x} \\
& A_{y}=\boldsymbol{A} \cdot \hat{a}_{y} \\
& A_{z}=\boldsymbol{A} \cdot \hat{a}_{z}
\end{aligned}
$$

Said another way, we project vector \mathbf{A} onto the directions $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$. Either way, the result is the same as determined earlier: every vector \boldsymbol{A} can be expressed as a sum of three orthogonal components:

$$
\begin{aligned}
\boldsymbol{A} & =\left(\boldsymbol{A} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\boldsymbol{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\boldsymbol{A} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}
\end{aligned}
$$

For example, consider a vector \mathbf{A}, along with two different sets of orthonormal base vectors:

The scalar components of vector A, in the direction of each base vector are:

$$
\begin{array}{ll}
A_{x}=\boldsymbol{A} \cdot \hat{a}_{x}=2.0 & A_{1}=\boldsymbol{A} \cdot \hat{a}_{1}=0.0 \\
A_{y}=\boldsymbol{A} \cdot \hat{a}_{y}=1.5 & A_{2}=\boldsymbol{A} \cdot \hat{a}_{2}=2.5 \\
A_{z}=\boldsymbol{A} \cdot \hat{a}_{z}=0.0 & A_{3}=\boldsymbol{A} \cdot \hat{a}_{3}=0.0
\end{array}
$$

Using the first set of base vectors, we can write the vector A as:

$$
\begin{aligned}
\boldsymbol{A} & =A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} \\
& =2.0 \hat{a}_{x}+1.5 \hat{a}_{y}
\end{aligned}
$$

Or, using the second set, we find that:

$$
\begin{aligned}
\mathbf{A} & =A_{1} \hat{a}_{1}+A_{2} \hat{a}_{2}+A_{3} \hat{a}_{3} \\
& =2.5 \hat{a}_{2}
\end{aligned}
$$

It is very important to realize that:

$$
\boldsymbol{A}=2.0 \hat{a}_{x}+1.5 \hat{a}_{y}=2.5 \hat{a}_{z}
$$

In other words, both expressions represent exactly the same vector! The difference in the representations is a result of using different base vectors, not because vector \mathbf{A} is somehow "different" for each representation.

Spherical Base Vectors

Spherical base vectors are the "natural" base vectors of a sphere.
\hat{a}_{r} points in the direction of increasing r. In other words \hat{a}_{r} points away from the origin. This is analogous to the direction we call up.
\hat{a}_{θ} points in the direction of increasing θ. This is analogous to the direction we call south.
\hat{a}_{ϕ} points in the direction of increasing ϕ. This is analogous to the direction we call east.

IMPORTANT NOTE: The directions of spherical base vectors are dependent on position. First you must determine where you are in space (using coordinate values), then you can define the directions of $\hat{a}_{r}, \hat{a}_{\theta}, \hat{a}_{\phi}$.

Note Cartesian base vectors are special, in that their directions are independent of location-they have the same directions throughout all space.

Thus, it is helpful to define spherical base vectors in terms of Cartesian base vectors. It can be shown that:
$\hat{a}_{r} \cdot \hat{a}_{x}=\sin \theta \cos \phi \quad \hat{a}_{\theta} \cdot \hat{a}_{x}=\cos \theta \cos \phi \quad \hat{a}_{\phi} \cdot \hat{a}_{x}=-\sin \phi$
$\hat{a}_{r} \cdot \hat{a}_{y}=\sin \theta \sin \phi \quad \hat{a}_{\theta} \cdot \hat{a}_{y}=\cos \theta \sin \phi \quad \hat{a}_{\phi} \cdot \hat{a}_{y}=\cos \phi$
$\hat{a}_{r} \cdot \hat{a}_{z}=\cos \theta$
$\hat{a}_{\theta} \cdot \hat{a}_{z}=-\sin \theta$
$\hat{a}_{\phi} \cdot \hat{a}_{z}=0$

Recall that any vector \mathbf{A} can be written as:

$$
\mathbf{A}=\left(\mathbf{A} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\mathbf{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\mathbf{A} \cdot \hat{a}_{z}\right) \hat{a}_{z} .
$$

Therefore, we can write \hat{a}_{r} as, for example:

$$
\begin{aligned}
\hat{a}_{r} & =\left(\hat{a}_{r} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{r} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{r} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\sin \theta \cos \phi \hat{a}_{x}+\sin \theta \sin \phi \hat{a}_{y}+\cos \theta \hat{a}_{z}
\end{aligned}
$$

This result explicitly shows that \hat{a}_{r} is a function of θ and ϕ.

For example, at the point in space $r=7.239, \theta=90^{\circ}$ and $\phi=0^{\circ}$, we find that $\hat{a}_{r}=\hat{a}_{x}$. In other words, at this point in space, the direction \hat{a}_{r} points in the x-direction.

Or, at the point in space $r=2.735, \theta=90^{\circ}$ and $\phi=90^{\circ}$, we find that $\hat{a}_{r}=\hat{a}_{y}$. In other words, at this point in space, \hat{a}_{r} points in the y-direction.

Additionally, we can write \hat{a}_{θ} and \hat{a}_{ϕ} as:

$$
\begin{aligned}
& \hat{a}_{\theta}=\left(\hat{a}_{\theta} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{\theta} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{\theta} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& \hat{a}_{\phi}=\left(\hat{a}_{\phi} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{\phi} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{\phi} \cdot \hat{a}_{z}\right) \hat{a}_{z}
\end{aligned}
$$

Alternatively, we can write Cartesian base vectors in terms of spherical base vectors, i.e.,

$$
\begin{aligned}
& \hat{a}_{x}=\left(\hat{a}_{x} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{x} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{x} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& \hat{a}_{y}=\left(\hat{a}_{y} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{y} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{y} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& \hat{a}_{z}=\left(\hat{a}_{z} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{z} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{z} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}
\end{aligned}
$$

Using the table on the previous page, we can insert the result of each dot product to express each base vector in terms of spherical coordinates.

Cylindrical Base Vectors

Cylindrical base vectors are the natural base vectors of a cylinder.
\hat{a}_{ρ} points in the direction of increasing ρ. In other words, \hat{a}_{ρ} points away from the z-axis.
\hat{a}_{ϕ} points in the direction of increasing ϕ. This is precisely the same base vector we described for spherical base vectors.
\hat{a}_{z} points in the direction of increasing \boldsymbol{z}. This is precisely the same base vector we described for Cartesian base vectors.

It is evident, that like spherical base vectors, the cylindrical base vectors are dependent on position. A vector that points away from the z-axis (e.g., \hat{a}_{p}), will point in a direction that is dependent on where we are in space!

We can express cylindrical base vectors in terms of Cartesian base vectors. First, we find that:

$$
\begin{array}{lll}
\hat{a}_{\rho} \cdot \hat{a}_{x}=\cos \phi & \hat{a}_{\phi} \cdot \hat{a}_{x}=-\sin \phi & \hat{a}_{z} \cdot \hat{a}_{x}=0 \\
\hat{a}_{\rho} \cdot \hat{a}_{y}=\sin \phi & \hat{a}_{\phi} \cdot \hat{a}_{y}=\cos \phi & \hat{a}_{z} \cdot \hat{a}_{y}=0 \\
\hat{a}_{\rho} \cdot \hat{a}_{z}=0 & \hat{a}_{\phi} \cdot \hat{a}_{z}=0 & \hat{a}_{z} \cdot \hat{a}_{z}=1
\end{array}
$$

We can use these results to write cylindrical base vectors in terms of Cartesian base vectors, or vice versa!

For example,

$$
\begin{aligned}
\hat{a}_{p} & =\left(\hat{a}_{p} \cdot \hat{a}_{x}\right) \hat{a}_{x}+\left(\hat{a}_{p} \cdot \hat{a}_{y}\right) \hat{a}_{y}+\left(\hat{a}_{p} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\cos \phi \hat{a}_{x}+\sin \phi \hat{a}_{y}
\end{aligned}
$$

or,

$$
\begin{aligned}
\hat{a}_{x} & =\left(\hat{a}_{x} \cdot \hat{a}_{\rho}\right) \hat{a}_{\rho}+\left(\hat{a}_{x} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}+\left(\hat{a}_{x} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\cos \phi \hat{a}_{\rho}-\sin \phi \hat{a}_{\phi}
\end{aligned}
$$

Finally, we can write cylindrical base vectors in terms of spherical base vectors, or vice versa, using the following relationships:

$$
\begin{array}{lll}
\hat{a}_{\rho} \cdot \hat{a}_{r}=\sin \theta & \hat{a}_{\phi} \cdot \hat{a}_{r}=0 & \hat{a}_{z} \cdot \hat{a}_{r}=\cos \theta \\
\hat{a}_{\rho} \cdot \hat{a}_{\theta}=\cos \theta & \hat{a}_{\phi} \cdot \hat{a}_{\theta}=0 & \hat{a}_{z} \cdot \hat{a}_{\theta}=-\sin \theta \\
\hat{a}_{\rho} \cdot \hat{a}_{\phi}=0 & \hat{a}_{\phi} \cdot \hat{a}_{\phi}=1 & \hat{a}_{z} \cdot \hat{a}_{\phi}=0
\end{array}
$$

e.g.,

$$
\begin{aligned}
\hat{a}_{p} & =\left(\hat{a}_{p} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\hat{a}_{p} \cdot \hat{a}_{\theta}\right) \hat{a}_{\theta}+\left(\hat{a}_{p} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi} \\
& =\sin \theta \hat{a}_{r}+\cos \theta \hat{a}_{\theta} \\
\hat{a}_{\theta} & =\left(\hat{a}_{\theta} \cdot \hat{a}_{\rho}\right) \hat{a}_{\rho}+\left(\hat{a}_{\theta} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}+\left(\hat{a}_{\theta} \cdot \hat{a}_{z}\right) \hat{a}_{z} \\
& =\cos \theta \hat{a}_{\rho}-\sin \theta \hat{a}_{z}
\end{aligned}
$$

Vector Algebra using Orthonormal Base Vectors

Q: Why express a vector using orthonormal base vectors? Doesn't this just make things more complicated??

A: Actually, it makes things much simpler. The evaluation of vector operations such as addition, subtraction, multiplication, dot product, and cross product all become straightforward if all vectors are expressed using the same set of base vectors.

Consider two vectors A and B, each expressed using the same set of base vectors $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$:

$$
\begin{aligned}
& \mathrm{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} \\
& \mathrm{~B}=B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}
\end{aligned}
$$

1. Addition and Subtraction

If we add these two vectors together, we find:

$$
\begin{aligned}
\mathbf{A}+\mathbf{B} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right)+\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} \hat{a}_{x}+B_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+B_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}+B_{z} \hat{a}_{z} \\
& =\left(A_{x}+B_{x}\right) \hat{a}_{x}+\left(A_{y}+B_{y}\right) \hat{a}_{y}+\left(A_{z}+B_{z}\right) \hat{a}_{z}
\end{aligned}
$$

In other words, each component of the sum of two vectors is equal to the sum of each component.

Similarly, we find for subtraction:

$$
\begin{aligned}
\mathbf{A}-\mathbf{B} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right)-\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} \hat{a}_{x}-B_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}-B_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}-B_{z} \hat{a}_{z} \\
& =\left(A_{x}-B_{x}\right) \hat{a}_{x}+\left(A_{y}-B_{y}\right) \hat{a}_{y}+\left(A_{z}-B_{z}\right) \hat{a}_{z}
\end{aligned}
$$

2. Vector/Scalar Multiplication

Say we multiply a scalar a and a vector B, i.e., a B:

$$
\begin{aligned}
a \mathbf{B} & =a\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =a B_{x} \hat{a}_{x}+a B_{y} \hat{a}_{y}+a B_{z} \hat{a}_{z} \\
& =\left(a B_{x}\right) \hat{a}_{x}+\left(a B_{y}\right) \hat{a}_{y}+\left(a B_{z}\right) \hat{a}_{z}
\end{aligned}
$$

In other words, each component of the product of a scalar and a vector are equal to the product of the scalar and each component.

3. Dot Product

Say we take the dot product of \mathbf{A} and B :

Q: I thought

 this was suppose to make things easier!?!$$
\begin{aligned}
\mathrm{A} \cdot \mathrm{~B} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right) \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} \hat{a}_{x} \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& +A_{y} \hat{a}_{y} \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& +A_{z} \hat{a}_{z} \cdot\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} B_{x}\left(\hat{a}_{x} \cdot \hat{a}_{x}\right)+A_{x} B_{y}\left(\hat{a}_{x} \cdot \hat{a}_{y}\right)+A_{x} B_{z}\left(\hat{a}_{x} \cdot \hat{a}_{z}\right) \\
& +A_{y} B_{x}\left(\hat{a}_{y} \cdot \hat{a}_{x}\right)+A_{y} B_{y}\left(\hat{a}_{y} \cdot \hat{a}_{y}\right)+A_{y} B_{y}\left(\hat{a}_{y} \cdot \hat{a}_{z}\right) \\
& +A_{z} B_{x}\left(\hat{a}_{z} \cdot \hat{a}_{x}\right)+A_{z} B_{y}\left(\hat{a}_{z} \cdot \hat{a}_{y}\right)+A_{z} B_{z}\left(\hat{a}_{z} \cdot \hat{a}_{z}\right)
\end{aligned}
$$

A: Be patient! Recall that these are orthonormal base vectors, therefore:

$$
\hat{a}_{x} \cdot \hat{a}_{x}=\hat{a}_{y} \cdot \hat{a}_{y}=\hat{a}_{z} \cdot \hat{a}_{z}=1 \text { and } \hat{a}_{x} \cdot \hat{a}_{y}=\hat{a}_{y} \cdot \hat{a}_{z}=\hat{a}_{z} \cdot \hat{a}_{x}=0
$$

As a result, our dot product expression reduces to this simple expression:

$\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

We can apply this to the expression for determining the magnitude of a vector:

$$
|\boldsymbol{A}|^{2}=\boldsymbol{A} \cdot \boldsymbol{A}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}
$$

Therefore:

$$
|\boldsymbol{A}|=\sqrt{\boldsymbol{A} \cdot \boldsymbol{A}}=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

For example, consider a previous handout, where we expressed a vector using two different sets of basis vectors:

$$
\boldsymbol{A}=2.0 \hat{a}_{x}+1.5 \hat{a}_{y}
$$

or,

$$
A=2.5 \hat{b}_{y}
$$

Therefore, the magnitude of \mathbf{A} is determined to be:

$$
|A|=\sqrt{1.5^{2}+2.0^{2}}=\sqrt{6.25}=2.5
$$

or,

$$
|A|=\sqrt{2.5^{2}}=\sqrt{6.25}=2.5
$$

Q: Hey! We get the same answer from both expressions; is this a coincidence?

A: No! Remember, both expressions represent the same vector, only using different sets of base vectors. The magnitude of vector \boldsymbol{A} is 2.5, regardless of how we choose to express A.

4. Cross Product

Now lets take the cross product $\mathrm{A} \times \mathrm{B}$:

$$
\begin{aligned}
\mathrm{A} \times \mathrm{B} & =\left(A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}\right) \times\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} \hat{a}_{x} \times\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& +A_{y} \hat{a}_{y} \times\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& +A_{z} \hat{a}_{z} \times\left(B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}\right) \\
& =A_{x} B_{x}\left(\hat{a}_{x} \times \hat{a}_{x}\right)+A_{x} B_{y}\left(\hat{a}_{x} \times \hat{a}_{y}\right)+A_{x} B_{z}\left(\hat{a}_{x} \times \hat{a}_{z}\right) \\
& +A_{y} B_{x}\left(\hat{a}_{y} \times \hat{a}_{x}\right)+A_{y} B_{y}\left(\hat{a}_{y} \times \hat{a}_{y}\right)+A_{y} B_{z}\left(\hat{a}_{y} \times \hat{a}_{z}\right) \\
& +A_{z} B_{x}\left(\hat{a}_{z} \times \hat{a}_{x}\right)+A_{z} B_{y}\left(\hat{a}_{z} \times \hat{a}_{y}\right)+A_{z} B_{z}\left(\hat{a}_{z} \times \hat{a}_{z}\right)
\end{aligned}
$$

Remember, we know that:

$$
\hat{a}_{x} \times \hat{a}_{x}=\hat{a}_{y} \times \hat{a}_{y}=\hat{a}_{z} \times \hat{a}_{z}=0
$$

also, since base vectors form a right-handed system:

$$
\hat{a}_{x} \times \hat{a}_{y}=\hat{a}_{z} \quad \hat{a}_{y} \times \hat{a}_{z}=\hat{a}_{x} \quad \hat{a}_{z} \times \hat{a}_{x}=\hat{a}_{y}
$$

Remember also that $A \times B=-(B \times A)$, therefore:

$$
\hat{a}_{y} \times \hat{a}_{x}=-\hat{a}_{z} \quad \hat{a}_{z} \times \hat{a}_{y}=-\hat{a}_{x} \quad \hat{a}_{x} \times \hat{a}_{z}=-\hat{a}_{y}
$$

Combining all the equations above, we get:

$$
\mathrm{A} \times \mathrm{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{a}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{a}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{a}_{z}
$$

5. Triple Product

Combining the results of the dot product and the cross product, we find that the triple product can be expressed as:
$\mathrm{A} \cdot \mathrm{B} \times \boldsymbol{C}=\left(A_{x} B_{y} C_{z}+A_{y} B_{z} C_{x}+A_{z} B_{x} C_{y}\right)-\left(A_{x} B_{z} C_{y}+A_{y} B_{x} C_{z}+A_{z} B_{y} C_{x}\right)$

IMPORTANT NOTES:

In addition to all that we have discussed here, it is critical that you understand the following points about vector algebra using orthonormal base vectors!

* The results provided in this handout were given for Cartesian base vectors ($\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$). However, they are equally valid for any right-handed set of base vectors $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ (e.g., $\hat{a}_{\rho}, \hat{a}_{\phi}, \hat{a}_{z}$ or $\hat{a}_{r}, \hat{a}_{\theta}, \hat{a}_{p}$.
* These results are algorithms for evaluating various vector algebraic operations. They are not definitions of the operations. The definitions of these operations were covered in Section 2-3.
* The scalar components A_{x}, A_{y}, and A_{z} represent either discrete scalar (e.9., $A_{x}=4.2$) or scalar field quantities (e.g., $A_{\theta}=r^{2} \sin \theta \cos \phi$.

Vector Fields

Base vectors give us a convenient way to express vector fields!
You will recall that a vector field is a vector quantity that is a function of other scalar values. In this class, we will study vector fields that are a function of position (e.g., $\boldsymbol{A}(x, y, z)$).

We earlier considered an example of a vector field of this type: the wind velocity $\mathbf{v}(x, y)$ across the upper Midwest.


```
|\mp@code{lllllllllllll}}\begin{array}{llll}{0}&{2}&{4}&{6}
```

When we express a vector field using orthonormal base vectors, the scalar component of each direction is a scalar field-a scalar function of position!

In other words, a vector field can have the form:

$$
A(x, y, z)=A_{x}(x, y, z) \hat{a}_{x}+A_{y}(x, y, z) \hat{a}_{y}+A_{z}(x, y, z) \hat{a}_{z}
$$

We therefore can express a vector field $\mathbf{A}(x, y, z)$ in terms of 3 scalar fields: $A_{x}(x, y, z), A_{y}(x, y, z)$, and $A_{z}(x, y, z)$, which express each of the 3 scalar components as a function of position (x, y, z).

For example, we might encounter this vector field:

$$
A(x, y, z)=\left(x^{2}+y^{2}\right) \hat{a}_{x}+\frac{x z}{y} \hat{a}_{y}+(3-y) \hat{a}_{z}
$$

In this case it is evident that:

$$
\begin{aligned}
& A_{x}(x, y, z)=\left(x^{2}+y^{2}\right) \\
& A_{y}(x, y, z)=\frac{x z}{y} \\
& A_{z}(x, y, z)=(3-y)
\end{aligned}
$$

The vector algebraic rules that we discussed in previous handouts are just as valid for vector fields and scalar field components as they are for discrete vectors and discrete scalar components.

For example, consider these two vector fields, expressed in terms of orthonormal base vectors $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$:

$$
\begin{aligned}
& \mathrm{A}(x, y, z)=y^{2} \hat{a}_{x}+(x-z) \hat{a}_{y}+\frac{y}{z} \hat{a}_{z} \\
& \mathrm{~B}(x, y, z)=(x+2) \hat{a}_{x}+z \hat{a}_{y}+x y z \hat{a}_{z}
\end{aligned}
$$

The dot product of these two vector fields is a scalar field:

$$
\begin{aligned}
\mathrm{A}(x, y, z) \cdot \mathrm{B}(x, y, z) & =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
& =y^{2}(x+2)+\left(x z-z^{2}\right)+x y^{2}
\end{aligned}
$$

Likewise, the sum of these two vector fields is a vector field:

$$
\begin{aligned}
\mathbf{A}(x, y, z)+\mathrm{B}(x, y, z) & =\left(A_{x}+B_{x}\right) \hat{a}_{x}+\left(A_{y}+B_{y}\right) \hat{a}_{y}+\left(A_{z}+B_{z}\right) \hat{a}_{z} \\
& =\left(y^{2}+x+2\right) \hat{a}_{x}+x \hat{a}_{y}+\frac{y\left(x z^{2}+1\right)}{z} \hat{a}_{z}
\end{aligned}
$$

Example: Expressing Vector Fields with Coordinate Systems

Consider the vector field:

$$
\mathbf{A}=x z \hat{a}_{x}+\left(x^{2}+y^{2}\right) \hat{a}_{y}+\left(\frac{x}{z}\right) \hat{a}_{z}
$$

Let's try to accomplish three things:

1. Express \mathbf{A} using spherical coordinates and Cartesian base vectors.
2. Express A using Cartesian coordinates and spherical base vectors.
3. Express A using cylindrical coordinates and cylindrical base vectors.
4. The vector field is already expressed with Cartesian base vectors, therefore we only need to change the Cartesian coordinates in each scalar component into spherical coordinates.

The scalar component of \boldsymbol{A} in the x-direction is:

$$
\begin{aligned}
A_{x} & =x z \\
& =(r \sin \theta \cos \phi)(r \cos \theta) \\
& =r^{2} \sin \theta \cos \theta \cos \phi
\end{aligned}
$$

The scalar component of \boldsymbol{A} in the y-direction is:

$$
\begin{aligned}
A_{y} & =x^{2}+y^{2} \\
& =(r \sin \theta \cos \phi)^{2}+(r \sin \theta \sin \phi)^{2} \\
& =r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \\
& =r^{2} \sin ^{2} \theta
\end{aligned}
$$

The scalar component of \boldsymbol{A} in the \boldsymbol{z}-direction is:

$$
\begin{aligned}
A_{z} & =\frac{x}{z} \\
& =\frac{r \sin \theta \cos \phi}{r \cos \theta} \\
& =\tan \theta \cos \phi
\end{aligned}
$$

Therefore, the vector field can be expressed using spherical coordinates as:

$$
\boldsymbol{A}=r^{2} \sin \theta \cos \theta \cos \phi \hat{a}_{x}+r^{2} \sin ^{2} \theta \hat{a}_{y}+\tan \theta \cos \phi \hat{a}_{z}
$$

2. Now, let's express A using spherical base vectors. We cannot simply change the coordinates of each component.
Rather, we must determine new scalar components, since we are using a new set of base vectors. We begin by stating:

$$
\boldsymbol{A}=\left(\boldsymbol{A} \cdot \hat{a}_{r}\right) \hat{a}_{r}+\left(\boldsymbol{A} \cdot \hat{\theta}_{\theta}\right) \hat{a}_{\theta}+\left(\boldsymbol{A} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}
$$

The scalar component A_{r} is therefore:

$$
\begin{aligned}
\mathbf{A} \cdot \hat{a}_{r} & =x z \hat{a}_{x} \cdot \hat{a}_{r}+\left(x^{2}+y^{2}\right) \hat{a}_{y} \cdot \hat{a}_{r}+\left(\frac{x}{z}\right) \hat{a}_{z} \cdot \hat{a}_{r} \\
& =x z(\sin \theta \cos \phi)+\left(x^{2}+y^{2}\right)(\sin \theta \sin \phi)+\left(\frac{x}{z}\right)(\cos \theta) \\
& =x z \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} \\
& +\left(x^{2}+y^{2}\right) \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{y}{\sqrt{x^{2}+y^{2}}} \\
& +\left(\frac{x}{z}\right) \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\frac{x^{2} z}{\sqrt{x^{2}+y^{2}+z^{2}}+\frac{y\left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}} \\
& =\frac{x^{2} z+x^{2} y+y^{3}+x}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{aligned}
$$

Likewise, the scalar component A_{θ} is:

$$
\begin{aligned}
A \cdot \hat{a}_{\theta} & =x z \hat{a}_{x} \cdot \hat{a}_{\theta}+\left(x^{2}+y^{2}\right) \hat{a}_{y} \cdot \hat{a}_{\theta}+\left(\frac{x}{z}\right) \hat{a}_{z} \cdot \hat{a}_{\theta} \\
& =x z(\cos \theta \cos \phi)+\left(x^{2}+y^{2}\right)(\cos \theta \sin \phi)-\left(\frac{x}{z}\right)(\sin \theta) \\
& =x z \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} \\
& +\left(x^{2}+y^{2}\right) \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}} \\
& -\left(\frac{x}{z}\right) \frac{\sqrt{x^{2}+y^{2}+z^{2}}}{\sqrt{x^{2}}} \\
= & \frac{x^{2} z^{3}}{z \sqrt{x^{2}+y^{2}+z^{2} \sqrt{x^{2}+y^{2}}}+\frac{z \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{x^{2}+y^{2}}}{y z^{2}\left(x^{2}+y^{2}\right)}} \\
& -\frac{x\left(x^{2}+y^{2}\right)}{z \sqrt{x^{2}+y^{2}+z^{2} \sqrt{x^{2}+y^{2}}}} \\
= & \frac{x^{2} z^{3}+x^{2} y z^{2}+y^{3} z-x^{3}-x y^{2}}{z \sqrt{x^{2}+y^{2}+z^{2} \sqrt{x^{2}+y^{2}}}}
\end{aligned}
$$

And finally, the scalar component A_{ϕ} is:

$$
\begin{aligned}
\mathbf{A} \cdot \hat{a}_{\phi} & =x z \hat{a}_{x} \cdot \hat{a}_{\phi}+\left(x^{2}+y^{2}\right) \hat{a}_{y} \cdot \hat{a}_{\phi}+\left(\frac{x}{z}\right) \hat{a}_{z} \cdot \hat{a}_{\phi} \\
& =x z(-\sin \phi)+\left(x^{2}+y^{2}\right)(\cos \phi)+\left(\frac{x}{z}\right) 0 \\
& =x z \frac{-y}{\sqrt{x^{2}+y^{2}}}+\left(x^{2}+y^{2}\right) \frac{x}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{-x y z+x^{3}+x y^{2}}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Whew! We're finished! The vector \boldsymbol{A} is expressed using spherical base vectors as:

$$
\begin{aligned}
A & =\left(\frac{x^{2} z+x^{2} y+y^{3}+x}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \hat{a}_{r} \\
& +\left(\frac{x^{2} z^{3}+x^{2} y z^{2}+y^{3} z-x^{3}-x y^{2}}{z \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{x^{2}+y^{2}}}\right) \hat{a}_{\theta} \\
& +\left(\frac{-x y z+x^{3}+x y^{2}}{\sqrt{x^{2}+y^{2}}}\right) \hat{a}_{\phi}
\end{aligned}
$$

3. Now, let's write A in terms of cylindrical coordinates and cylindrical base vectors (i.e., in terms of the cylindrical coordinate system).

$$
\boldsymbol{A}=\left(\boldsymbol{A} \cdot \hat{a}_{\rho}\right) \hat{a}_{\rho}+\left(\boldsymbol{A} \cdot \hat{a}_{\phi}\right) \hat{a}_{\phi}+\left(\mathbf{A} \cdot \hat{a}_{z}\right) \hat{a}_{z}
$$

First, A_{ρ} is:

$$
\begin{aligned}
\boldsymbol{A} \cdot \hat{a}_{\rho} & =x z \hat{a}_{x} \cdot \hat{a}_{\rho}+\left(x^{2}+y^{2}\right) \hat{a}_{y} \cdot \hat{a}_{\rho}+\left(\frac{x}{z}\right) \hat{a}_{z} \cdot \hat{a}_{\rho} \\
& =x z(\cos \phi)+\left(x^{2}+y^{2}\right)(\sin \phi)+\left(\frac{x}{z}\right)(0) \\
& =\rho \cos \phi z(\cos \phi)+\rho^{2}(\sin \phi) \\
& =\rho \cos ^{2} \phi z+\rho^{2} \sin \phi
\end{aligned}
$$

And A_{ϕ} is:

$$
\begin{aligned}
\boldsymbol{A} \cdot \hat{a}_{\phi} & =x z \hat{a}_{x} \cdot \hat{a}_{\phi}+\left(x^{2}+y^{2}\right) \hat{a}_{y} \cdot \hat{a}_{\phi}+\left(\frac{x}{z}\right) \hat{a}_{z} \cdot \hat{a}_{\phi} \\
& =x z(-\sin \phi)+\left(x^{2}+y^{2}\right)(\cos \phi)+\left(\frac{x}{z}\right)(0) \\
& =-\rho \cos \phi z(\sin \phi)+\rho^{2}(\cos \phi) \\
& =\rho \cos \phi(\rho-z \sin \phi)
\end{aligned}
$$

And finally, A_{z} is:

$$
\begin{aligned}
\boldsymbol{A} \cdot \hat{a}_{z} & =x z \hat{a}_{x} \cdot \hat{a}_{z}+\left(x^{2}+y^{2}\right) \hat{a}_{y} \cdot \hat{a}_{z}+\left(\frac{x}{z}\right) \hat{a}_{z} \cdot \hat{a}_{z} \\
& =x z(0)+\left(x^{2}+y^{2}\right)(0)+\left(\frac{x}{z}\right)(1) \\
& =\left(\frac{x}{z}\right) \\
& =\frac{\rho \cos \phi}{z}
\end{aligned}
$$

We can therefore express the vector field \mathbf{A} using both cylindrical coordinates and cylindrical base vectors:

$$
\boldsymbol{A}=\left(\rho \cos ^{2} \phi z+\rho^{2} \sin \phi\right) \hat{a}_{\rho}+\rho \cos \phi(\rho-z \sin \phi) \hat{a}_{\phi}+\left(\frac{\rho \cos \phi}{z}\right) \hat{a}_{z}
$$

Thus, we have determined three possible ways (there are many other ways!) to express the vector field \mathbf{A} :
1.

$$
\mathbf{A}=r^{2} \sin \theta \cos \theta \cos \phi \hat{a}_{x}+r^{2} \sin ^{2} \theta \hat{a}_{y}+\tan \theta \cos \phi \hat{a}_{z}
$$

2.

$$
\begin{aligned}
A & =\left(\frac{x^{2} z+x^{2} y+y^{3}+x}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \hat{a}_{r} \\
& +\left(\frac{x^{2} z^{3}+x^{2} y z^{2}+y^{3} z-x^{3}-x y^{2}}{z \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{x^{2}+y^{2}}}\right) \hat{a}_{\theta} \\
& +\left(\frac{-x y z+x^{3}+x y^{2}}{\sqrt{x^{2}+y^{2}}}\right) \hat{a}_{\phi}
\end{aligned}
$$

3.

$$
\mathbf{A}=\left(\rho \cos ^{2} \phi \boldsymbol{z}+\rho^{2} \sin \phi\right) \hat{a}_{\rho}+\rho \cos \phi(\rho-z \sin \phi) \hat{a}_{\phi}+\left(\frac{\rho \cos \phi}{z}\right) \hat{a}_{z}
$$

Please note:

* The three expressions for vector field \boldsymbol{A} provided in this handout each look very different. However, they are just three different methods for describing the same vector field. Any one of the three is correct, and will result in the same result for any physical problem.
* We can express a vector field using any set of coordinate variables and any set of base vectors.
* Generally speaking, however, we use one coordinate system to describe a vector field. For example, we use both spherical coordinates and spherical base vectors.

Q: So, which coordinate system (Cartesian, cylindrical, spherical) should we use? How can we decide between the three?

A: Ideally, we select that system that most simplifies the mathematics. This depends on the physical problem we are solving.

For example, if we are determining the fields resulting from a spherically symmetric charge density, we will find that using the spherical coordinate system will make our analysis the easiest and most straightforward.

The Position Vector

Consider a point whose location in space is specified with Cartesian coordinates (e.g., $\mathrm{P}(x, y, z)$). Now consider the directed distance (a vector quantity!) extending from the origin to this point.

This particular directed distance-a vector beginning at the origin and extending outward to a point-is a very important and fundamental directed distance known as the position vector \bar{r}.

Using the Cartesian coordinate system, the position vector can be explicitly written as:

$$
\bar{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}
$$

* Note that given the coordinates of some point (e.g., $x=1, y$ $=2, z=-3$), we can easily determine the corresponding position vector (e.g., $\bar{r}=\hat{a}_{x}+2 \hat{a}_{y}-3 \hat{a}_{z}$).
* Moreover, given some specific position vector (e.g.,
$\left.\bar{r}=4 \hat{a}_{y}-2 \hat{a}_{z}\right)$, we can easily determine the corresponding coordinates of that point (e.g., $x=0, y=4, z=-2$).

In other words, a position vector \bar{r} is an alternative way to denote the location of a point in space! We can use three coordinate values to specify a point's location, or we can use a single position vector \bar{r}.

I see! The position vector is essentially a pointer. Look at the end of the vector, and you will find the point specified!

The magnitude of \bar{r}

Note the magnitude of any and all position vectors is:

$$
|\overline{\mathrm{r}}|=\sqrt{\overline{\mathrm{r}} \cdot \overline{\mathrm{r}}}=\sqrt{x^{2}+y^{2}+z^{2}}=r
$$

The magnitude of the position vector is equal to the coordinate value r of the point the position vector is pointing to!

Q: Hey, this makes perfect sense! Doesn't the coordinate valuer have a physical interpretation as the distance between the point and the origin?

A: That's right! The magnitude of a directed distance vector is equal to the distance between the two points-in this case the distance between the specified point and the origin!

Alternative forms of the position vector

Be careful! Although the position vector is correctly expressed as:

$$
\bar{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}
$$

It is NOT CORRECT to express the position vector as:

$$
\bar{r} \neq \rho \hat{a}_{p}+\phi \hat{a}_{\phi}+z \hat{a}_{z}
$$

nor

$$
\bar{r} \neq r \hat{a}_{r}+\theta \hat{a}_{\theta}+\phi \hat{a}_{\phi}
$$

NEVER, EVER express the position vector in either of these two ways!

It should be readily apparent that the two expression above cannot represent a position vector-because neither is even a directed distance!

Q: Why sure-it is of course readily apparent to me-but why don't you go ahead and explain it to those with less insight!

A: Recall that the magnitude of the position vector \bar{r} has units of distance. Thus, the scalar components of the position vector must also have units of distance (e.g., meters). The coordinates x, y, z, ρ and r do have units of distance, but coordinates θ and ϕ do not.

Thus, the vectors $\theta \hat{a}_{\theta}$ and $\phi \hat{a}_{\phi}$ cannot be vector components of a position vector-or for that matter, any other directed distance!

Instead, we can use coordinate transforms to show that:

$$
\begin{aligned}
\bar{r} & =x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z} \\
& =\rho \cos \phi \hat{a}_{x}+\rho \sin \phi \hat{a}_{y}+z \hat{a}_{z} \\
& =r \sin \theta \cos \phi \hat{a}_{x}+r \sin \theta \sin \phi \hat{a}_{y}+r \cos \theta \hat{a}_{z}
\end{aligned}
$$

ALWAYS use one of these three expressions of a position vector!!

Note that in each of the three expressions above, we use Cartesian base vectors. The scalar components can be expressed using Cartesian, cylindrical, or spherical coordinates, but we must always use Cartesian base vectors.

Q: Why must we always use Cartesian base vectors? You said that we could express any vector using spherical or base vectors. Doesn't this also apply to position vectors?

A: The reason we only use Cartesian base vectors for constructing a position vector is that Cartesian base vectors are the only base vectors whose directions are fixed-independent of position in space!

To see why this is important, let's go ahead and change the base vectors used to express the position vector from Cartesian to spherical or cylindrical. If we do this, we find:

$$
\begin{aligned}
\bar{r} & =x \hat{\boldsymbol{a}}_{x}+y \hat{\boldsymbol{a}}_{y}+z \hat{\boldsymbol{a}}_{z} \\
& =\rho \hat{\boldsymbol{a}}_{\rho}+z \hat{\boldsymbol{a}}_{z} \\
& =r \hat{\boldsymbol{a}}_{r}
\end{aligned}
$$

Thus, the position vector expressed with the cylindrical coordinate system is $\bar{r}=\rho \hat{a}_{\rho}+z \hat{a}_{z}$, while with the spherical coordinate system we get $\bar{r}=r \hat{a}_{r}$.

The problem with these two expressions is that the direction of base vectors \hat{a}_{p} and \hat{a}_{r} are not constant. Instead, they themselves are vector fields-their direction is a function of position!

Thus, an expression such as $\bar{r}=6 \hat{a}_{r}$ does not explicitly define a point in space, as we do not know in what direction base vector \hat{a}_{r} is pointing! The expression $\bar{r}=6 \hat{a}_{r}$ does tell us that the coordinate $r=6$, but how do we determine what the values of coordinates θ or ϕ are? (answer: we can't!)

Compare this to the expression:

$$
\bar{r}=\hat{a}_{x}+2 \hat{a}_{y}-3 \hat{a}_{z}
$$

Here, the point described by the position vector is clear and unambiguous. This position vector identifies the point $P(x=1, y$
$=2, z=-3$).

Lesson learned: Always express a position vector using Cartesian base vectors (see box on previous page)!

Applications of the

Position Vector

Position vectors are particularly useful when we need to determine the directed distance between two arbitrary points in space.

If the location of point P_{A} is denoted by position vector \bar{r}_{A}, and the location of point P_{B} by position vector \bar{r}_{B}, then the directed distance from point P_{A} to point P_{B}, is:

$$
\mathrm{R}_{A B}=\bar{r}_{B}-\bar{r}_{A}
$$

We can use this directed distance $R_{A B}$ to describe much about the relative locations of point P_{A} and P_{B} !

For example, the physical distance between these two points is simply the magnitude of this directed distance:

Likewise, we can specify the direction toward point P_{B}, with respect to point P_{A}, by find the unit vector $\hat{a}_{A B}$:

$\uparrow z$

$$
\hat{a}_{A B}=\frac{\mathbf{R}_{A B}}{\left|\mathbf{R}_{A B}\right|}=\frac{\overline{r_{B}}-\bar{r}_{A}}{\left|\bar{r}_{B}-\bar{r}_{A}\right|}
$$

Vector Field Notation

A vector field describes a vector value at every location in space. Therefore, we can denote a vector field as $\boldsymbol{A}(x, y, z)$, or $\mathbf{A}(\rho, \phi, \boldsymbol{z})$, or $\mathbf{A}(r, \theta, \phi)$, explicitly showing that vector quantity \boldsymbol{A} is a function of position, as denoted by some set of coordinates.

However, as we have emphasized before, the physical reality that vector field \mathbf{A} expresses is independent of the coordinates we use to express it. In other words, although the math may look very different, we find that:

$$
\mathbf{A}(x, y, z)=\mathbf{A}(\rho, \phi, z)=\mathbf{A}(r, \theta, \phi) .
$$

Alternatively then, we typically express a vector field as simply:

$$
A(\bar{r})
$$

This symbolically says everything that we need to convey; vector \mathbf{A} is a function of position-it is a vector field!

Note that the vector field notation $\mathbf{A}(\bar{r})$ does not explicitly specify a coordinate system for expressing A. That's up to you to decide!

Now, in the vector field expression $A(\bar{r})$ we note that there are two vectors: \boldsymbol{A} and \bar{r}. It is ridiculously important that you understand what each of these two vectors represents!

Position vector \bar{r} denotes the location in space where vector \boldsymbol{A} is defined.

For example, consider the vector field $\mathbf{V}(\bar{r})$, which describes the wind velocity across the state of Kansas.

In this map, the origin has been placed at Lawrence. The locations of Kansas towns can thus be identified using position vectors (units in miles):
$\bar{r}_{1}=-400 \hat{a}_{x}+20 \hat{a}_{y} \longrightarrow$ the location of Goodland, KS
$\bar{r}_{2}=-90 \hat{a}_{x}+70 \hat{a}_{y} \longrightarrow$ the location of Marysville, KS
$\bar{r}_{3}=30 \hat{a}_{x}-5 \hat{a}_{y} \longrightarrow$ the location of Fort Scott, KS
$\bar{r}_{4}=40 \hat{a}_{x}-90 \hat{a}_{y} \longrightarrow$ the location of Fort Scott,KS
$\bar{r}_{5}=-130 \hat{a}_{x}-70 \hat{a}_{y} \longrightarrow$ the location of Newton, KS

Evaluating the vector field $\mathbf{V}(\bar{r})$ at these locations provides the wind velocity at each Kansas town (units of mph).
$\mathbf{V}\left(\bar{r}_{1}\right)=15 \hat{a}_{x}-17 \hat{a}_{y} \longrightarrow$ the wind velocity in Goodland, KS
$V\left(\bar{r}_{2}\right)=15 \hat{a}_{x}-9 \hat{a}_{y} \longrightarrow$ the wind velocity in Marysville, KS
$V\left(\bar{r}_{3}\right)=11 \hat{a}_{x} \quad \longrightarrow$ the wind velocity in Olathe, KS
$V\left(\bar{r}_{4}\right)=7 \hat{a}_{x} \quad \longrightarrow$ the wind velocity in Fort Scott, KS
$\mathbf{V}\left(\bar{r}_{5}\right)=9 \hat{a}_{x}-4 \hat{a}_{y} \longrightarrow$ the wind velocity in Newton, KS

Remember, a vector field $\boldsymbol{A}(\bar{r})$ describes the magnitude and direction of the vector \boldsymbol{A} that is located at the point defined by position vector \bar{r}.

Vector A does not "extend" from the origin to the point described by position vector \bar{r}. Rather, the vector A describes a quantity at that point, and that point only. The magnitude of vector \boldsymbol{A} does not have units of distance! The length of the arrow that represents vector \boldsymbol{A} is merely symbolic-its length has no direct physical meaning.

On the other hand, the position vector \bar{r}, being a directed distance, does extend from the origin to a specific point in space. The magnitude of a position vector \bar{r} is distance-the length of the position vector arrow has a direct physical meaning.

A Gallery of Vector Fields

To help understand how a vector field relates to its mathematical representation using base vectors, carefully examine and consider these examples, plotted on either the $x-y$ plane (i.e, the plane with all points whose coordinate $z=0$) or the $x-z$ plane (i.e, the plane with all points whose coordinate $y=0$).

Spend some time studying each of these examples, until you see how the math relates to the vector field plot and vice versa.

Remember, vector fieldsexpressed in terms of scalar components and base vectors-are the mathematical language that we will use to describe much of electromagnetics-you must learn how to speak and interpret this language!

-10

\sim
-

C

,
$A(\bar{r})=x \hat{a}_{x}-y \hat{a}_{y}$
-10
$A(\bar{r})=y \hat{a}_{x}-x \hat{a}_{y}$

$A(\bar{r})=\hat{\boldsymbol{a}}_{\rho}$
$=\cos \phi \hat{a}_{x}+\sin \phi \hat{a}_{y}$

(10

