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2.4 Orthogonal Coordinate Systems (pp.16-33) 
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A.  Coordinates 
 
*  
 
 
*  
 
 
*  
 
 
Point P(0,0,0) is always the origin. 
 
HO: Cartesian Coordinates 
 
HO:  Cylindrical Coordinates 
 
HO:  Spherical Coordinates 
 
B. Coordinate Transformations 
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HO: Coordinate Transformations  
 
Example: Coordinate Transformations 
 
 
C. Base Vectors 
 
*  
 
 
*  
 
 
HO: Base Vectors 
 
 
 
HO: Cartesian Base Vectors 
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D.  Vector Expansion using Base Vectors 
 
Q:   
 
 
A:   
 
 
 
e.g.,    

1 1 2 2 3 3ˆ ˆ ˆB B B= + +B a a a  
or 
 

ˆ ˆ ˆx x y y z zC C C= + +C a a a  
 

HO: Vector Expansion using Base Vectors 
 
E. Spherical and Cylindrical Base Vectors 

 
 
 
 
HO: Spherical Base Vectors 
 
HO: Cylindrical Base Vectors 
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F.  Vector Algebra and Vector Expansions 

 
 
 
 
HO: Vector Algebra using Orthonormal Base Vectors 

 
G.  The Vector Field 
 
*   
 
*   
 
*   
 
 
*   
 
 
This means that the 3 scalar components of vector 
field are each a scalar field! 
 
HO:  Vector Fields 
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HO:  Expressing Vector Fields with Coordinate 
Systems 
 
H.  The Position Vector 

 
 
 
 
We call this directed distance the position vector. 
 
HO: The Position Vector 
 
HO: Applications of the Position Vector 
 
HO: Vector Field Notation 
 
HO: A Gallery of Vector Fields 
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Cartesian Coordinates 
 
You’re probably familiar with Cartesian coordinates.  In two-
dimensions, we can specify a point on a plane using two scalar 
values, generally called x and y.   
 

P(x,y) 

origin 

x 

y 

y- axis 

x - axis 

 
 
 
 
 
 
 
We can extend this to three-dimensions, by adding a third 
scalar value z. 

origin 

P(x,y,z) 

z - axis 

x - axis 

y - axis 
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Note the coordinate values in the Cartesian system effectively 
represent the distance from a plane intersecting the origin. 
 
For example, x =3 means that the point is 3 units from the y-z 
plane (i.e., the x = 0 plane).   
 
Likewise, the y coordinate provides the distance from the x-z 
(y=0) plane, and the z coordinate provides the distance from the 
x-y (z =0) plane. 
 
Once all three distances are specified, the position of a point is 
uniquely identified. 

z 

y 
P(2,3,2.5) 

 P(0,0,0) 

2.5 

3 
2 

x 
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Cylindrical Coordinates 
 
You’re probably also familiar with polar coordinates.  In two-
dimensions, we can also specify a point with two scalar values, 
generally called ρ and φ.   
 

φ 

ρ 
P(ρ,φ) 

y 

x 

 
 
 
 
 
 
 
We can extend this to three-dimensions, by adding a third 
scalar value z.  This method for identifying the position of a 
point is referred to as cylindrical coordinates. 

P(ρ,φ,z) 

z 

y 

x 
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Note the physical significance of each parameter of cylindrical 
coordinates: 
 
1. The value ρ indicates the distance of the point from the z-
axis ( ρ≤ < ∞0 ).  
 
2. The value φ indicates the rotation angle around the z-axis 
( φ π≤ < )0 2 , precisely the same as the angle φ used in 
spherical coordinates. 
 
3.  The value z indicates the distance of the point from the   
x-y (z = 0) plane ( ), precisely the same as the 
coordinate z  used in Cartesian coordinates 

−∞ < < ∞z

 
Once all three values are specified, the position of a point is 
uniquely identified. 
 
 

 
 
 

 
 
 

 

 P(0,φ,0) y 

P(3, ,2.560 ) 
3 

60
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x 
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Spherical Coordinates 
 

*  Geographers specify a location on 
the Earth’s surface using three scalar 
Jim Stiles The Univ. of Kansas Dept. of EECS 

values: longitude, latitude, and 
altitude.   
 
*  Both longitude and latitude are 
angular measures, while altitude is a 
measure of distance.   
 
*  Latitude, longitude, and altitude are 
similar to spherical coordinates.   

 
*  Spherical coordinates consist of one scalar value (r), with 
units of distance, while the other two scalar values ( ,θ φ ) have 
angular units (degrees or radians). 
 

P( , ,r θ φ ) 

z 

y 

x 
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1.  For spherical coordinates, r (0 r≤ < ∞) expresses the 
distance of the point from the origin (i.e., similar to altitude). 
 
2.  Angle θ  (0 θ π≤ ≤ ) represents the angle formed with the 
z-axis (i.e., similar to latitude). 
 
 3.  Angle φ  (0 2φ π≤ < ) represents the rotation angle around 
the z-axis, precisely the same as the cylindrical coordinate φ 
(i.e., similar to longitude). 
 
 

P(3.0,45 0,6° ° ) 45θ °=

r =3.0 

60φ °=

 P(0,θ,φ) 

z 

y 

x 

 
 
 
 
 
 
 
 
 
 
 
Thus, using spherical coordinates, a point in space can be 
unambiguously defined by one distance and two angles. 
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Coordinate 
Transformations 

 
Say we know the location of a point, or the description of some 
scalar field in terms of Cartesian coordinates (e.g., T (x,y,z)).   
 
What if we decide to express this point or this scalar field in 
terms of cylindrical or spherical coordinates instead? 
 

 
 

Q:  How do we accomplish this coordinate 
transformation? 
 
A:   Easy! We simply apply our knowledge of 
trigonometry.  
 
 
 

We see that the coordinate values , , ,   and z rρ θ  are all 
variables of a right triangle!  We can use our knowledge  of 
trigonometry to relate them to each other. 
 
In fact, we can completely derive the relationship between all 
six independent coordinate values by considering just two very 
important right triangles!       Hint: Memorize these 2 
triangles!!! 
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It is evident from the triangle that, for example: 
 
 

z

r

ρ

θ

=

=

=

=

 

 
 

P 

z 

x 

y 

Very Important 
Right Triangle #1 
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Likewise, the coordinate values , , ,   and x y ρ φ  are also related 
by a right triangle! 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the resulting triangle, it is evident that: 
 

2 2

1 1 1

 cos
 sin

tan cos sin

x
y

x y
y yx
x

ρ φ
ρ φ

ρ

φ
ρ ρ

− − −

=

=

= +

⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Combining the results of the two triangles allows us to each 
coordinate set in terms of each other: 

P 

z 

x 

y 

Very Important 
Right Triangle #2 
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Cartesian and Cylindrical 
 
 

ρ φ
ρ φ

=
=
=

x cos
y sin
z z

  

ρ

φ −

= +

⎡ ⎤= ⎢ ⎥⎣ ⎦
=

x y
ytan
x

z z

2 2

1   (be careful !)  

 
 
 

Cartesian and Spherical 
 
 

 sin  cos
 sin  sin
 cos

x r
y r
z r

θ φ
θ φ
θ

=

=
=

  

2 2 2

1
2 2 2

1

cos

tan
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θ
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−

−

= + +
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⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 
 
Cylindrical and Spherical  
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ρ θ
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Example: Coordinate 
Transformations 

 
Say we have denoted a point in space (using Cartesian 
Coordinates) as P (x =-3, y =-3, z =2). 
 
Let’s instead define this same point using cylindrical 
coordinates , , zρ φ : 
 

( ) ( )

[ ]

2 22 2

1 1 1

3 3 3 2

3tan tan tan 1 45
3

2

x y
y
x

z

ρ

φ − − −

= + = − + − =

−⎡ ⎤ ⎡ ⎤= = = =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
=

 

 
Therefore, the location of this point can perhaps be defined 
also as P ( , ,3 2  45  2zρ φ= = = ). 
 

Q: Wait! Something has gone 
horribly wrong.  Coordinate 

45φ =  indicates that point P is 
located in quadrant I, whereas 
the coordinates x =-3, y =-3 tell 
us it is in fact in quadrant III! 
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A: The problem is our interpretation of the inverse tangent! 
 
Remember that 0 360φ≤ < , so that we must do a four quadrant 
inverse tangent.  Your calculator likely only does a two quadrant 
inverse tangent (i.e., 90 90φ≤ ≤ − ), so be careful! 
 
Therefore, if we correctly find the coordinate φ : 
 

1 1 3tan tan 225
3

y
x

φ − − −⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

The location of point P can be expressed as either P (x=-3, y=-3, 
z=2) or P ( , ,3 2  225  2zρ φ= = = ). 

45φ =225φ =

x 

y 

P 

I 

III IV 

II 
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We can also perform a coordinate transformation on a scalar 
field.  For example, consider the scalar field (i.e., scalar  
function): 

( , , ) 3 sing z zρ φ ρ φ=  
 

Lets try to rewrite this function in terms of Cartesian 
coordinates. We first note that since 2 2x yρ = + , 
 

( ) /3 23 2 2x yρ = +  
 

Now, what about sinφ ?  We know that [ ]1tan y xφ −= , thus we 
might be tempted to write: 
 

-1sin sin tan y
x

φ
⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

 
Although technically correct, this is one ugly expression.  We 
can instead turn to one of the very important right triangles 
that we discussed earlier:  

 
 
 
 
 
 
 
 

P 

ρ

x 

y 

y 

x 

φ 

 
From this triangle, it is 
apparent that: 
 

2 2
sin y y

x y
φ

ρ
= =

+
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As a result, the scalar field can be written in Cartesian 
coordinates as: 

( ) ( )

( )

, ,
3

2 2 2
2 2

2 2

yg x y z x y z
x y

x y yz

= +
+

= +

 

 
Remember, although the scalar fields: 
 

( ) ( ), , 2 2g x y z x y yz= +  
and: 

( , , ) 3 sing z zρ φ ρ φ=  
 

look very different, they are in fact exactly the same 
functions—only expressed using different coordinate variables.  
 
For example, if you evaluate each of the scalar fields at the 
point described earlier in the handout, you will get exactly the 
same result! 
 
 
 

( ), ,3 3 2 108g x y z= − = − = = −  
 

( , , )3 2 225 2 108g zρ φ= = = = −  
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Base Vectors 
 
 
 
 
 
 
 
 
 
A:  It is very important that you understand that coordinates 
only allow us to specify position in 3-D space.  They cannot be 
used to specify direction!   
 
The most convenient way for us to specify the direction of a 
vector quantity is by using a well-defined orthornormal set of 
vectors known as base vectors. 
 
Recall that an orthonormal set of vectors, say 1 2 3ˆ ˆ ˆ, ,a a a , have 
the following properties: 
 

1.  Each vector is a unit vector: 
 

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2 3 3 1a a a a a a⋅ = ⋅ = ⋅ =  
 

2.  Each vector is mutually orthogonal: 
 

ˆ ˆ ˆ ˆ ˆ ˆ1 2 2 3 3 1 0a a a a a a⋅ = ⋅ = ⋅ =  

Q: You said earlier that vector 
quantities (either discrete or field) 
have both and magnitude and 
direction.  But how do we specify 
direction in 3-D space?  Do we use 
coordinate values (e.g., x, y, z )?? 
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Additionally, a set of base vectors 1 2 3ˆ ˆ ˆ, ,a a a  must be arranged 
such that: 

 
 
 

 
 
 

 
An orthonormal set with this property is known as a right-
handed system. 
 
 

All base vectors 1 2 3ˆ ˆ ˆ, ,a a a  must form a right-handed, 
orthonormal set. 

 
 
Recall that we use unit vectors to define direction.  Thus, a 
set of base vectors defines three distinct directions in our 3-
D space! 
 
 

1 2 3 2 3 1 3 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,a a a a a a a a a× = × = × =  

1̂a  
 

3̂a  

2̂a  
 

Q:  But, what three 
directions do we use?? I 
remember that you said that 
there are an infinite number 
of possible orientations of an
orthonormal  set!! 
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A:  We will define several systematic, mathematically precise 
methods for defining the orientation of base vectors.  
Generally speaking, we will find that the orientation of these 
base vectors will not be fixed, but will in fact vary with 
position in space (i.e., as a function of coordinate values)! 
 
Essentially, we will define at each and every point in space a 
different set of basis vectors, which can be used to uniquely 
define the direction of any vector quantity at that point! 
 
 
 
 
 
 
 
 
 
 
 
A:  We will in fact study one method for defining base 
vectors that does in fact result in an othonormal set whose 
orientation is fixed—the same at all points in space (Cartesian 
base vectors).  
 
However, we will study two other methods where the 
orientation of base vectors is different at all points in space 
(spherical and cylindrical base vectors). We use these two 
methods to define base vectors because for many physical 
problems, it is actually easier and wiser to do so! 

Q: Good golly! Defining a 
different set of base vectors for 
every point in space just seems 
dad-gum confusing.  Why can’t 
we just fix a set of base vectors 
such that their orientation is the 
same at all points in space? 
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For example, consider how 
we define direction on 
Earth: North/South, 
East/West, Up/Down.  
 
Each of these directions 
can be represented by a 
unit vector, and the three 
unit vectors together form 
a set of base vectors.   

 
 
 
Think about, however, how 
these base vectors are 
oriented!  Since we live on 
the surface of a sphere (i.e., 
the Earth), it makes sense 
for us to orient the base 
vectors with respect to the 
spherical surface. 
 
What this means, of course, 
is that each location on the 
Earth will orient its “base 
vectors” differently. This 
orientation is thus different 
for every point on Earth—a 
method that makes perfect 
sense!                                             
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Cartesian Base Vectors 
 
As the name implies, the Cartesian base vectors are related to 
the Cartesian coordinates. 
 
Specifically, the unit vector x̂a  points in the direction of 
increasing x.  In other words, it points away from the y-z (x=0) 
plane. 
 
Similarly, ŷa and ẑa  point in the direction of increasing y and z, 
respectfully. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We said that the directions of base vectors generally vary with 
location in space—Cartesian base vectors are the exception!  
Their directions are the same regardless of where you are in 
space.  
 

x 

y 

z 

x̂a

ẑa

ŷa
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Vector Expansion using 
Base Vectors 

 
Having defined an orthonormal set of base vectors, we can 
express any vector in terms of these unit vectors: 
 
 

ˆ ˆ ˆx x y y z zA a A a A a= + +A  
 
 

Note therefore that any vector can be written as a sum of 
three vectors! 
 

*  Each of these three vectors point in each of the three 
orthogonal directions x̂a , ŷa , ẑa . 

 
*  The magnitude of each of these three vectors are 

determined by the scalar values Ax, Ay, and Az .  
 
*  The values Ax, Ay, and Az are called the scalar 

components of vector A. 
 
*  The vectors ˆx xA a , ˆy yA a , ˆz zA a  are called the vector 

components of A. 
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Q:  What the heck are scalar the components Ax, Ay, 
and Az, and how do we determine them ??  
 
A:   Use the dot product to evaluate the expression 
above ! 
 
 

Begin by taking the dot product of the above expression with 
unit vector x̂a : 
 

( )ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ
x x x y y z z x

x x x y y x z z x

a A a A a A a a
A a a A a a A a a

⋅ = + + ⋅

= ⋅ + ⋅ + ⋅

A
 

 
But, since the unit vectors are orthogonal, we know that: 
 

ˆ ˆ ˆ ˆ ˆ ˆ1 0 0x x y x z xa a a a a a⋅ = ⋅ = ⋅ =  
 

Thus, the expression above becomes: 
 
 

ˆx xA a= ⋅A  
 

 
In other words, the scalar component Ax is just the value of the 
dot product of vector A and base vector x̂a .  Similarly, we find 
that: 

ˆ ˆandy y z zA a A a= ⋅ = ⋅A A  
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Thus, any vector can be expressed specifically as: 
 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
x x y y z z

x x y y z z

a a a a a a
A a A a A a

= ⋅ + ⋅ + ⋅

= + +

A A A A
 

 
 
We can demonstrate this vector expression geometrically. 

 
 
 
 
 
 
 
 
 
Note the length (i.e., magnitude) of vector A can be related to 
the length of vector ˆy yA a  using trigonometry: 
 
 
 
 
 
 
 

x̂a

ŷa  

ˆ ˆx x y yA aA a= +Aˆy yA a  

ˆx xA a

ˆ ˆx x y yA aA a= +A

ˆy yA a

Ayθ
cos AyyA θ= A

x̂a

ŷa
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Likewise, we find that the scalar component xA is related to A  
as: 
 
 
 
 
 
 
 
 
From this geometric interpretation, we can see why we often 
refer to the scalar component Ax as the scalar projection of 
vector A onto vector (direction) x̂a . 
 
Likewise, we often refer to the vector component ˆx xA a  as the 
vector projection of vector A onto vector (direction) x̂a . 

ˆ ˆx x y yA aA a= +A

ˆx xA aAxθ

cos AxxA θ= Α
x̂a

ŷa

As you may have already noticed, the 
scalar component Ax, which we 
determined geometrically, can likewise 
be expressed in terms of a dot product! 

 
cos
ˆ cos

ˆ

x Ax

x Ax

x

A
a

a

θ

θ

=

=

= ⋅

Α

Α

Α
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Accordingly, we find that the scalar component of vector A are 
determined by “doting” vector A with each of the three base 
vectors ˆ ˆ ˆ, ,x y za a a : 
  

ˆ
ˆ

ˆ

x x

y y

z z

A a
A a
A a

= ⋅

= ⋅

= ⋅

A
A

A

 

 
 
Said another way, we project vector A onto the directions 
ˆ ˆ ˆ, ,x y za a a .  Either way, the result is the same as determined 

earlier: every vector A can be expressed as a sum of three 
orthogonal components: 
 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
x x y y z z

x x y y z z

a a a a a a
A a A a A a

= ⋅ + ⋅ + ⋅

= + +

A A A A
 

 
 
For example, consider a vector A, along with two different sets 
of orthonormal base vectors: 
 
 
 
 
 
 

x̂a

ŷa

1̂a  

2̂a  

A
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The scalar components of vector A, in the direction of each 
base vector are: 
 

ˆ .
ˆ .
ˆ .

2 0
1 5
0 0

x x

y y

z z

A a
A a
A a

= ⋅ =

= ⋅ =

= ⋅ =

A
A
A

                  
ˆ .
ˆ .
ˆ .

1 1

2 2

3 3

0 0
2 5
0 0

A a
A a
A a

= ⋅ =

= ⋅ =

= ⋅ =

A
A
A

 

 
Using the first set of base vectors, we can write the vector A 
as: 

ˆ ˆ ˆ

ˆ ˆ. .2 0 1 5
x x y y z z

x y

A a A a A a
a a

= + +

= +

A
 

 
 
 
Or, using the second set, we find that: 
 

ˆ ˆ ˆ
ˆ.

1 1 2 2 3 3

22 5
A a A a A a

a
= + +

=

A
 

 
It is very important to realize that: 
 

ˆ ˆ ˆ. . . 22 0 1 5 2 5x ya a a= + =A  
 
In other words, both expressions represent exactly the same 
vector!  The difference in the representations is a result of 
using different base vectors, not because vector A is somehow   
“different” for each representation. 

 

ˆ.1 5 ya

ˆ.2 0 xa

A

A

ˆ. 22 5 a
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Spherical Base Vectors 
 
Spherical base vectors are the “natural” base vectors of a 
sphere. 
 
 

râ   points in the direction of increasing r.  In other 
words râ  points away from the origin.  This is 
analogous to the direction we call up. 
 

θ
â   points in the direction of increasing θ.   This is 
analogous to the direction we call south. 
 

φ
â   points in the direction of increasing φ.  This is 
analogous to the direction we call east. 
 
 
 

x 

y 

z 

θ̂a

r̂a

φ̂a
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IMPORTANT NOTE:  The directions of spherical base vectors 
are dependent on position.  First you must determine where you 
are in space (using coordinate values), then you can define the 
directions of θ φrˆ ˆ ˆa a a, , . 
 
Note Cartesian base vectors are special, in that their 
directions are independent of location—they have the same 
directions throughout all space. 
 
Thus, it is helpful to define spherical base vectors in terms of 
Cartesian base vectors.  It can be shown that: 
 
 

θ φ

θ φ

θ

⋅ =

⋅ =

⋅ =

r x

r y

r z

ˆ ˆa a sin cos
ˆ ˆa a sin sin
ˆ ˆa a cos

      
θ

θ

θ

θ φ

θ φ

θ

⋅ =

⋅ =

⋅ = −

x

y

z

ˆ ˆa a cos cos
ˆ ˆa a cos sin
ˆ ˆa a sin

      
φ

φ

φ

φ

φ

⋅ = −

⋅ =

⋅ =

x

y

z

ˆ ˆa a sin
ˆ ˆa a cos
ˆ ˆa a 0

 

 
 
Recall that any vector A can be written as: 
 

( ) ( ) ( )= ⋅ + ⋅ + ⋅x x y y z zˆ ˆ ˆ ˆ ˆ ˆa a a a a aA A A A . 

 
Therefore, we can write râ  as, for example: 
 

( ) ( ) ( )
θ φ θ φ θ

= ⋅ + ⋅ + ⋅

= + +

r r x x r y y r z z

x y z

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a
ˆ ˆ ˆsin cos a sin sin a cos a   

 

 
This result explicitly shows that râ  is a function of θ φ and . 
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For example, at the point in space 7.239r = , θ φ= =90 and 0 , 
we find that =r xˆ ˆa a .  In other words, at this point in space, the 
direction râ  points in the x-direction.  
 
Or, at the point in space  2.735r = , θ φ= =90 and 90 , we find 
that =r yˆ ˆa a .  In other words, at this point in space, râ  points in 
the y-direction.  
 
Additionally, we can write θ φˆ ˆa a and  as: 
 

( ) ( ) ( )

( ) ( ) ( )

θ θ θ θ

φ φ φ φ

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

x x y y z z

x x y y z z

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a
 

 
 

Alternatively, we can write Cartesian base vectors in terms of 
spherical base vectors, i.e., 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

θ θ φ φ

θ θ φ φ

θ θ φ φ

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

x x r r x x

y y r r y y

z z r r z z

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa a a a a a a a a a

 

 
Using the table on the previous page, we can insert the result 
of each dot product to express each base vector in terms of 
spherical coordinates. 
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Cylindrical Base Vectors 
 
Cylindrical base vectors are the natural base vectors of a 
cylinder. 
 

 
âρ   points in the direction of increasing ρ.   In other 
words,  âρ  points away from the z-axis.   
 
âφ   points in the direction of increasing φ.  This is 
precisely the same base vector we described for 
spherical base vectors.  
 

ẑa   points in the direction of increasing z.  This is 
precisely the same base vector we described for 
Cartesian base vectors. 
 
 
 
 
 

x 

y 

z 

âρ

ẑa

âφ
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It is evident, that like spherical base vectors, the 
cylindrical base vectors are dependent on position.  A 
vector that points away from the z-axis (e.g., âρ ), will 
point in a direction that is dependent on where we are in 
space! 
 
We can express cylindrical base vectors in terms of 
Cartesian base vectors.  First, we find that: 
 
 

ˆ ˆ

ˆ ˆ

ˆ ˆ

cos
sin
0

x

y

z

a a
a a
a a

ρ

ρ

ρ

φ

φ

⋅ =

⋅ =

⋅ =

        

ˆ ˆ

ˆ ˆ

ˆ ˆ

sin
os

0

x

y

z

a a
a a c
a a

φ

φ

φ

φ

φ

⋅ = −

⋅ =

⋅ =

        
ˆ ˆ
ˆ ˆ

ˆ ˆ

0
0
1

z x

z y

z z

a a
a a
a a

⋅ =

⋅ =

⋅ =

 

 
 
 
We can use these results to write cylindrical base 
vectors in terms of Cartesian base vectors, or vice versa! 
 
For example, 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆcos sin
p p x x p y y p z z

x y

a a a a a a a a a a
a aφ φ

= ⋅ + ⋅ + ⋅

= +
 

or, 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆcos sin
x x x x z za a a a a a a a a a

a a
ρ ρ φ φ

ρ φφ φ

= ⋅ + ⋅ + ⋅

= −
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Finally, we can write cylindrical base vectors in terms of 
spherical base vectors, or vice versa, using the following 
relationships: 
 
 
 

ˆ ˆ

ˆ ˆ

ˆ ˆ

sin
cos
0

ra a
a a
a a

ρ

ρ θ

ρ φ

θ

θ

⋅ =

⋅ =

⋅ =

        

ˆ ˆ

ˆ ˆ

ˆ ˆ

0
0
1

ra a
a a
a a

φ

φ θ

φ φ

⋅ =

⋅ =

⋅ =

        
ˆ ˆ
ˆ ˆ
ˆ ˆ

cos
sin

0

z r

z

z

a a
a a
a a

θ

φ

θ
θ

⋅ =

⋅ = −

⋅ =

 

 
 
 

e.g., 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆsin cos
p p r r p p

r

a a a a a a a a a a
a a

θ θ φ φ

θθ θ

= ⋅ + ⋅ + ⋅

= +
 

 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆcos sin
z z

z

a a a a a a a a a a
a a

θ θ ρ ρ θ φ φ θ

ρθ θ

= ⋅ + ⋅ + ⋅

= −
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Vector Algebra using 
Orthonormal Base Vectors 

 
 
Q:  Why express a vector using orthonormal base 
vectors? Doesn’t this just make things more 
complicated ?? 
 
A: Actually, it makes things much simpler. The 
evaluation of vector operations such as addition, 
subtraction, multiplication, dot product, and cross 
product all become straightforward if all vectors 
are expressed using the same set of base vectors. 
 
 

 
 
Consider two vectors A and B, each expressed using the same 
set of base vectors ˆ ˆ ˆ, ,  x y za a a : 
 

 
ˆ ˆ ˆx x y y z zA a A a A a= + +A  

 
ˆ ˆ ˆx x y y z zB a B a B a= + +B  
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1.  Addition and Subtraction 
 
If we add these two vectors together, we find: 
 
 

( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z x x y y z z

x x x x y y y y z z z z

x x x y y y z z z

A a A a A a B a B a B a
A a B a A a B a A a B a

A B a A B a A B a

+ = + + + + +

= + + + + +

= + + + + +

A B

 

 
 
In other words, each component of the sum of two vectors is 
equal to the sum of each component. 
 
Similarly, we find for subtraction: 
 
 

( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z x x y y z z

x x x x y y y y z z z z

x x x y y y z z z

A a A a A a B a B a B a
A a B a A a B a A a B a

A B a A B a A B a

− = + + − + +

= − + − + −

= − + − + −

A B

 

 
 
 
2. Vector/Scalar Multiplication 
 
Say we multiply a scalar a and a vector B, i.e., a B: 
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( )

( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z

x x y y z z

x x y y z z

a a B a B a B a
aB a aB a aB a

aB a aB a aB a

= + +

= + +

= + +

B

 

 
 

In other words, each component of the product of a scalar and 
a vector are equal to the product of the scalar and each 
component. 
 
3.  Dot Product 
 
Say we take the dot product of A and B: 

 
 
 
 
 
 
 
 
 
 
 
 

A:  Be patient!  Recall that these are orthonormal base 
vectors, therefore: 
  

ˆ ˆ ˆ ˆ ˆ ˆ 1x x y y z za a a a a a⋅ = ⋅ = ⋅ =    and   ˆ ˆ ˆ ˆ ˆ ˆ 0x y y z z xa a a a a a⋅ = ⋅ = ⋅ =  

Q: I thought 
this was suppose 
to make things 
easier !?! 

( ) ( )
( )
( )
( )
( ) ( ) ( )
( ) ( ) ( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

x x y y z z x x y y z z

x x x x y y z z

y y x x y y z z

z z x x y y z z

x x x x x y x y x z x z

y x y x y y y y y y y z

z x z x z y

A a A a A a B a B a B a

A a B a B a B a

A a B a B a B a

A a B a B a B a

A B a a A B a a A B a a

A B a a A B a a A B a a

A B a a A B

⋅ = + + ⋅ + +

= ⋅ + +

+ ⋅ + +

+ ⋅ + +

= ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ +

A B

( ) ( )ˆ ˆ ˆ ˆz y z z z za a A B a a⋅ + ⋅
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As a result, our dot product expression reduces to this simple 
expression: 
 
 
 

x x y y z zA B A B A B⋅ = + +A B  
 
 

 
We can apply this to the expression for determining the 
magnitude of a vector: 
 

2 2 2 2
x y zA A A= ⋅ = + +A A A  

Therefore: 
 
 

2 2 2
x y zA A A= ⋅ = + +A A A  

 
 

For example, consider a previous handout, where we expressed a 
vector using two different sets of basis vectors: 
 

2 0 1 5ˆ ˆ. .x ya a= +A  
or, 

2 5ˆ. yb=A  
 

Therefore, the magnitude of A is determined to be: 
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2 21 5 2 0 6 25 2 5. . . .= + = =A  
or, 

22 5 6 25 2 5. . .= = =A  
 
 

 
Q:  Hey!  We get the same answer from both 
expressions; is this a coincidence ? 
 
A:   No!   Remember, both expressions represent 
the same vector, only using different sets of base 
vectors.  The magnitude of vector A is 2.5, 
regardless of how we choose to express A. 

 
 
 
4.  Cross Product 
 
Now lets take the cross product AxB: 
 

( ) ( )
( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

x x

x

x

x

x x x

x x x

x

x x y y z z x x y y z z

x x x x y y z z

y y x x y y z z

z z x x y y z z

x x x x x y x y x z x z

y x y x y y y y y z y z

z x z x z y

A a A a A a B a B a B a

A a B a B a B a

A a B a B a B a

A a B a B a B a

A B a a A B a a A B a a

A B a a A B a a A B a a

A B a a A B

= + + + +

= + +

+ + +

+ + +

= + +

+ + +

+ +

A B

( ) ( )ˆ ˆ ˆ ˆx xz y z z z za a A B a a+
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Remember, we know that: 
 

ˆ ˆ ˆ ˆ ˆ ˆx x x 0x x y y z za a a a a a= = =  
 

also, since base vectors form a right-handed system: 
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx       x       xx y z y z x z x ya a a a a a a a a= = =  
 

Remember also that AxB = -(BxA), therefore: 
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx       x       xy x z z y x x z ya a a a a a a a a= − = − = −  
 

Combining all the equations above, we get: 
 
 

( ) ( ) ( )ˆ ˆ ˆx Y Z Z Y X Z X X Z Y X Y Y X ZA B A B a A B A B a A B A B a= − + − + −A B  
 

 
 
5.  Triple Product 
 
Combining the results of the dot product and the cross product, 
we find that the triple product can be expressed as: 
 
 

( ) ( )x x y z y z x z x y x z y y x z z y xA B C A B C A B C A B C A B C A B C⋅ = + + − + +A B C  
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IMPORTANT NOTES:   
 
 
 
 
 
 
 
 
 
 
 
*  The results provided in this handout were given for Cartesian 
base vectors ( ˆ ˆ ˆ, ,x y za a a ).  However, they are equally valid for 
any right-handed set of base vectors ˆ ˆ ˆ1 2 3, ,a a a   (e.g., ˆ ˆ ˆ, , za a aρ φ  or 

ˆ ˆ ˆ, ,ra a aθ φ ). 
 
*   These results are algorithms for evaluating various vector 
algebraic operations.  They are not definitions of the 
operations.  The definitions of these operations were covered in 
Section 2-3. 
 
*   The scalar components Ax, Ay, and Az represent either 
discrete scalar (e.g., 4 2xA .= ) or scalar field quantities (e.g., 

2
θA r sin cos= θ φ .   

 

In addition to all that we 
have discussed here, it is 
critical that you understand 
the following points about 
vector algebra using 
orthonormal base vectors! 
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Vector Fields 
 
Base vectors give us a convenient way to express vector fields! 
 
You will recall that a vector field is a vector quantity that is a 
function of other scalar values.  In this class, we will study 
vector fields that are a function of position (e.g., ( ), ,x y zΑ ). 
 
We earlier considered an example of a vector field of this type: 
the wind velocity ( ),x yv across the upper Midwest. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When we express a vector field using orthonormal base 
vectors, the scalar component of each direction is a scalar 
field—a scalar function of position! 

x 

y 
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In other words, a vector field can have the form: 
 
 

ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )x x y y z zx y z A x y z a A x y z a A x y z a= + +A  
 
 

 
We therefore can express a vector field ( , , )x y zA  in terms of 
3 scalar fields: ( , , ), ( , , ),  and ( , , )x y zA x y z A x y z A x y z , which 
express each of the 3 scalar components as a function of 
position (x,y,z). 
 
For example, we might encounter this vector field: 
 

( )2 2 ˆ ˆ ˆ( , , ) ( ) 3x y z
xzx y z x y a a y a
y

= + + + −A  

 
In this case it is evident that: 
 

( )

2 2( , , ) ( )

( , , )

( , , ) 3

x

y

z

A x y z x y
xzA x y z
y

A x y z y

= +

=

= −

 

 
The vector algebraic rules that we discussed in previous 
handouts are just as valid for vector fields and scalar field 
components as they are for discrete vectors and discrete 
scalar components. 
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For example, consider these two vector fields, expressed in 
terms of orthonormal base vectors ˆ ˆ ˆ, ,x y za a a : 
 

2 ˆ ˆ ˆ( , , ) ( )

ˆ ˆ ˆ( , , ) ( 2)

x y z

x y z

yx y z y a x z a az

x y z x a z a xyz a

= + − +

= + + +

A

B
 

 
The dot product of these two vector fields is a scalar field: 
 

2 2 2

( , , ) ( , , )

( 2) ( )
x x y y z zx y z x y z A B A B A B

y x xz z xy
⋅ = + +

= + + − +

A B
 

 
Likewise, the sum of these two vector fields is a vector field: 
 

2
2

ˆ ˆ ˆ( , , ) ( , , ) ( ) ( ) ( )

( 1)ˆ ˆ ˆ( 2)

x x x y y y z z z

x y z

x y z x y z A B a A B a A B a
y xzy x a x a az

+ = + + + + +

+= + + + +

A B
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Example: Expressing 
Vector Fields with 
Coordinate Systems 

 
Consider the vector field: 
 

( )ˆ ˆ ˆ2 2
x y z

xxz a x y a a
z

⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠

A  

 
Let’s try to accomplish three things: 
 

1.  Express A using spherical coordinates and Cartesian 
base vectors. 

 
2.  Express A using Cartesian coordinates and spherical 
base vectors. 

 
3.  Express A using cylindrical coordinates and cylindrical 
base vectors. 

 
 
1.  The vector field is already expressed with Cartesian base 
vectors, therefore we only need to change the Cartesian 
coordinates in each scalar component into spherical 
coordinates. 
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The scalar component of A in the x-direction is: 
 

( ) ( )
2

 sin  cos  cos
sin  cos  cos

xA xz
r r

r
θ φ θ

θ θ φ

=

=

=

 

 
The scalar component of A in the y-direction is: 
 

( ) ( )
( )

2 2

2 2

2 2 2 2

2 2

 sin  cos  sin  sin

sin  cos sin

sin

yA x y

r r
r
r

θ φ θ φ

θ φ φ

θ

= +

= +

= +

=

 

 
The scalar component of A in the z-direction is: 
 

 sin  cos
 cos

tan cos  

z
xA
z
r

r
θ φ

θ
θ φ

=

=

=

 

 
Therefore, the vector field can be expressed using spherical 
coordinates as: 
 

ˆ ˆ ˆ2 2 2sin  cos  cos sin tan cosx y zr a r a aθ θ φ θ θ φ= + +A   
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2.  Now, let’s express A using spherical base vectors.  We 
cannot simply change the coordinates of each component.  
Rather, we must determine new scalar components, since we 
are using a new set of base vectors. We begin by stating: 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆr ra a a a a aθ θ φ φ= ⋅ + ⋅ + ⋅A A A A  
 

The scalar component Ar  is therefore: 
 

( )

( ) ( )( ) ( )

( )

( )

ˆˆˆ ˆ ˆˆ ˆ

2 2

2 2 2 2

2 2

2 2

2 2
2

2 22

2 2 2 2 2 2 2 2 2

2

2 2

2 3

2

2 2

2

2

2 2 2

2

cosi sin sin sn cos

r r z ry rx
xa xz x y
z

xxz x y
z

xz

x

a aa a

xy

x
z

y x yx z x
x y z x

y y
x y

y z x y z
x z

z x

a a

x y x
x y z

x y y x

y

x

y

y

x

x

z
z

⎛ ⎞⋅ = + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠

=

+ +

⎛ ⎞+⎜ ⎟
⎝ ⎠

+
= + +

+ + + + +

⋅

+

+

+

⋅

+

⋅

+

+

+ +

+

+

+
=

+

+

+

+

A

θ φθ φ θ

2 2y z+

 

 
Likewise, the scalar component Aθ is: 
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( )

( ) ( )( ) ( )

( )

( )

( )

ˆ ˆˆ ˆ ˆˆ ˆ2 2

2 2

2 2

2 2 22 3

2 2 2 2 2 2

2 2 2 2

2 2

2 2 2 2

2

2

2

2

2

2 2 2 2 2

2

2 2

sco ins c cos os sin

x y za a

z x
x y z x

xa xz x y
z

a a

yz
x y z

xxz x y
z

xz

x y

x
z

yz x yx z
z x y z x y z x y z x y

x x y
z x

a a

x y
x y z

y z

y

x y

⎛ ⎞⋅ = + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= + + − ⎜ ⎟
⎝ ⎠

=

+ +

⎛ ⎞−⎜ ⎟
⎝ ⎠

+
= +

+ + + +

⋅

+ +

+ +

⋅

+
−

+ +

+ +

+

+

+

+

⋅

+

A θθ θθ

θφ φ θθ

2 2 2

2 3 2 2 3 3 2

2 2 2 2 2

x y
x z x yz y z x xy

z x y z x y

+

+ + − −
=

+ + +

 

 
And finally, the scalar component Aφ is: 
 

( )

( ) ( )( )

( )

ˆ ˆˆ ˆ ˆˆ ˆ2 2

2 2

2
2 2

3 2

2

2

2

2

2

-sin os 0c

yx za aa a xa xz x y
z

xxz x y
z

xz x y

xyz x xy
x y

a a

x
x y

y
x y

⎛ ⎞⋅ = + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= + + +

⋅

⎜ ⎟
⎝ ⎠

= + +

− +

⋅

−

+

⋅

+

+
=

+

A φ φφ φ

φφ
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Whew! We’re finished! The vector A is expressed using 
spherical base vectors as: 
 

ˆ

ˆ

ˆ

2 2 3

2 2 2

2 3 2 2 3 3 2

2 2 2 2 2

3 2

2 2

r
x z x y y x a

x y z

x z x yz y z x xy a
z x y z x y

xyz x xy a
x y

θ

φ

⎛ ⎞+ + +⎜ ⎟=
⎜ ⎟+ +⎝ ⎠
⎛ ⎞+ + − −⎜ ⎟+
⎜ ⎟+ + +⎝ ⎠
⎛ ⎞− + +⎜ ⎟+
⎜ ⎟+⎝ ⎠

A

 

 
 
3.  Now, let’s write A in terms of cylindrical coordinates and 
cylindrical base vectors (i.e., in terms of the cylindrical 
coordinate system). 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆz za a a a a aρ ρ φ φ= ⋅ + ⋅ + ⋅A A A A  
 
First, Aρ is: 
 

( )

( ) ( )( ) ( )

( ) ( )

ˆ ˆˆ ˆ ˆ ˆˆ 2 2

2 2

2

2 2

cos cos s

0sinco

in
cos sin

s

x y z
xa xz x y
z

xxz x y
z

z

aa

z

a aa a⎛ ⎞⋅ = + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠

= +

= +

⋅ ⋅⋅A ρρ ρρ

φφ

ρ φ φ ρ φ

ρ φ ρ φ
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And Aφ is: 
 

( )

( ) ( )( ) ( )

( ) ( )
( )

ˆˆ ˆˆ ˆˆ ˆ2 2

2 2

2cos sin cos
cos s

c 0o-s

n

n

i

si

x zy
xa xz x y
z

xxz x

aa a a

z

a

y

z

a

z

⎛ ⎞⋅ = + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= +

⋅

+ + ⎜ ⎟
⎝ ⎠

= − +

−

⋅⋅

=

A φφφ φ

φ φ

ρ φ φ ρ φ

ρ φ ρ φ

 

 
And finally, Az is: 
 

( )

( ) ( )( ) ( )

ˆ ˆˆ ˆ ˆˆ ˆ2 2

2 2

o

0 1

c s

0

z

yx z z zz z
xa xz x y
z

xxz x y
z

x

aaa aa

z

a ⋅⎛ ⎞⋅ = + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= + + + ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⋅

=

⋅A

ρ φ

 

 
We can therefore express the vector field A using both 
cylindrical coordinates and cylindrical base vectors: 
 

( ) ( )ˆ ˆ ˆ2 2 coscos sin cos sin
z zz a z a aρ φ

ρ φρ φ ρ φ ρ φ ρ φ ⎛ ⎞= + + − + ⎜ ⎟
⎝ ⎠

A  
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Thus, we have determined three possible ways (there are many 
other ways!) to express the vector field A: 

 
1. 

ˆ ˆ ˆ2 2 2sin  cos  cos sin tan cosx y zr a r a aθ θ φ θ θ φ= + +A  
 

2. 

ˆ

ˆ

ˆ

2 2 3

2 2 2

2 3 2 2 3 3 2

2 2 2 2 2

3 2

2 2

r
x z x y y x a

x y z

x z x yz y z x xy a
z x y z x y

xyz x xy a
x y

θ

φ

⎛ ⎞+ + +⎜ ⎟=
⎜ ⎟+ +⎝ ⎠
⎛ ⎞+ + − −⎜ ⎟+
⎜ ⎟+ + +⎝ ⎠
⎛ ⎞− + +⎜ ⎟+
⎜ ⎟+⎝ ⎠

A

 

 
3. 

( ) ( )ˆ ˆ ˆ2 2 coscos sin cos sin
z zz a z a aρ φ

ρ φρ φ ρ φ ρ φ ρ φ ⎛ ⎞= + + − + ⎜ ⎟
⎝ ⎠

A  

 
Please note: 
 
* The three expressions for vector field A provided in this 
handout each look very different.  However, they are just three 
different methods for describing the same vector field.  Any 
one of the three is correct, and will result in the same result 
for any physical problem. 
 
*  We can express a vector field using any set of coordinate 
variables and any set of base vectors.   
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* Generally speaking, however, we use one coordinate system 
to describe a vector field. For example, we use both spherical 
coordinates and spherical base vectors. 
 
 
 
 
 
  
 
 
 
 
 
 
A: Ideally, we select that system that most simplifies the 
mathematics.  This depends on the physical problem we are 
solving.   
 
For example, if we are determining the fields resulting from a 
spherically symmetric charge density, we will find that using 
the spherical coordinate system will make our analysis the 
easiest and most straightforward. 
 
 
 
 
 

Q: So, which coordinate 
system (Cartesian, 
cylindrical, spherical) should 
we use ?  How can we decide
between the three? 
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The Position Vector 
 
Consider a point whose location in space is specified with 
Cartesian coordinates (e.g., P(x,y,z)).  Now consider the directed 
distance (a vector quantity!) extending from the origin to this 
point.  
 
 
 
 
 
 
 
 
 
 
 
 
This particular directed distance—a vector beginning at the 
origin and extending outward to a point—is a very important and 
fundamental directed distance known as the position vector r . 
 
Using the Cartesian coordinate system, the position vector can 
be explicitly written as: 
 
 

ˆ ˆ ˆ = x y zr x a y a z a+ +  
 

 

x 

y 

z 

P(x,y,z) 

r
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*   Note that given the coordinates of some point (e.g., x =1, y 
=2, z =-3), we can easily determine the corresponding position 
vector (e.g., 2 3x y zˆ ˆ ˆr a a a= + − ). 
 
*   Moreover, given some specific position vector (e.g., 

4 2y zˆ ˆr a a= − ),  we can easily determine the corresponding 
coordinates of that point (e.g., x =0, y =4, z =-2). 
 
In other words, a position vector r  is an alternative way to 
denote the location of a point in space! We can use three 
coordinate values to specify a point’s location, or we can use a 
single position vector r .  
 

I see! The position vector is essentially a 
pointer. Look at the end of the vector, 
and you will find the point specified! 

P(r ) 

r  
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The magnitude of r  
 
Note the magnitude of any and all position vectors is: 
 
 

2 2 2r r r x y z r= ⋅ = + + =  
 
 

The magnitude of the position vector is equal to the coordinate 
value r  of the point the position vector is pointing to! 
 
 
 
 
 
 
 
 
 
 
A: That’s right! The magnitude of a directed distance vector is 
equal to the distance between the two points—in this case the 
distance between the specified point and the origin! 
 
Alternative forms of the position vector 
 
Be careful!  Although the position vector is correctly expressed 
as: 

ˆ ˆ ˆr = x y zx a y a z a+ +  
 

Q: Hey, this makes perfect 
sense!  Doesn’t the coordinate 
value r have a physical 
interpretation as the distance 
between the point and the origin? 
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It is NOT CORRECT to express the position vector as: 
 

ˆ ˆ ˆr  p za a z aφρ φ+ +≠  
nor 
 

ˆ ˆ ˆr  rr a a aθ φθ φ+ +≠  
 

NEVER, EVER express the position vector in either of these 
two ways! 
 
It should be readily apparent that the two expression above 
cannot represent a position vector—because neither is even a 
directed distance! 
 
 
 
 
 
 
 
 
A: Recall that the magnitude of the position vector r  has units 
of distance.  Thus, the scalar components of the position 
vector must also have units of distance (e.g., meters). The 
coordinates , , ,x y z ρ  and r  do have units of distance, but 
coordinates  and θ φ  do not. 
 
Thus, the vectors θ̂θ a  and φ̂φ a  cannot be vector components of 
a position vector—or for that matter, any other directed 
distance!   

 

Q: Why sure—it is of 
course readily apparent 
to me—but why don’t you 
go ahead and explain it to 
those with less insight! 
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Instead, we can use coordinate transforms to show that: 
 
 

ˆ ˆ ˆ

ˆ ˆ ˆcos sin
ˆ ˆ ˆsin cos sin sin cos

x y z

x y z

x y z

r x y z
z

r r r
ρ φ ρ φ

θ φ θ φ θ

= + +

= + +

= + +

a a a
a a a

a a a
 

 
 
 

ALWAYS use one of these three expressions of a position 
vector!! 
 
Note that in each of the three expressions above, we use 
Cartesian base vectors.  The scalar components can be 
expressed using Cartesian, cylindrical, or spherical coordinates, 
but we must always use Cartesian base vectors. 
 
 
 
 
 
 
 
 
 
A:  The reason we only use Cartesian base vectors for 
constructing a position vector is that Cartesian base vectors are 
the only base vectors whose directions are fixed—independent 
of position in space!

Q:  Why must we always use 
Cartesian base vectors? You 
said that we could express any
vector using spherical or base 
vectors. Doesn’t this also 
apply to position vectors?  
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To see why this is important, let’s go ahead and change the base 
vectors used to express the position vector from Cartesian to 
spherical or cylindrical.  If we do this, we find: 
 

ˆ ˆ ˆ

ˆ ˆ

ˆ

x y z

z

r

r x y z
z

r
ρρ

= + +

= +

=

a a a
a a
a

 

 
Thus, the position vector expressed with the cylindrical 
coordinate system is ˆ ˆρ zr ρ z= +a a , while with the spherical 
coordinate system we get r̂r r= a . 

 
The problem with these two expressions is that the direction of 
base vectors ρ̂a  and r̂a  are not constant.  Instead, they 
themselves are vector fields—their direction is a function of 
position!  
 
Thus, an expression such as ˆ6 rr = a  does not explicitly define a 
point in space, as we do not know in what direction base vector 

r̂a  is pointing!  The expression ˆ6 rr = a  does tell us that the 
coordinate r =6, but how do we determine what the values of 
coordinates  or θ φ  are? (answer: we can’t! ) 
 
Compare this to the expression: 
 

ˆ ˆ ˆr = 2 3x y za a a+ −  
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Here, the point described by the position vector is clear and 
unambiguous.  This position vector identifies the point P(x =1, y 
=2, z =-3).  
 
Lesson learned:  Always express a position vector using 
Cartesian base vectors (see box on previous page)! 
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Applications of the 
Position Vector 

 
Position vectors are particularly useful when we need to 
determine the directed distance between two arbitrary points 
in space.   
 
 
 
 
 
 
 
 
 
If the location of point PA is denoted by position vector Ar , 
and the location of point PB by position vector Br , then the 
directed distance from point PA to point PB, is: 
 
 

-  AB B Ar r=R  
 
 
 

We can use this directed distance RAB to describe much about 
the relative locations of point PA and PB! 

 

x 

y 

z 

PA(x,y,z) 

ArBr

PB(x,y,z) 
ABR  
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For example, the physical distance between these two points 
is simply the magnitude of this directed distance: 
 
 
 
 
 
 
 

 
 

AB B Ad r r= = −R  
 
 
 
 

Likewise, we can specify the direction toward point  PB, with 
respect to point PA, by find the unit vector ÂBa : 
 
 
 
 
 

 
 
 
 

ˆ AB B A

AB B A

r r
r r

−
= =

−
R
RABa  

x 

y 

z 

PA(x,y,z) 

ArBr

PB(x,y,z) 
d 

x 

y 

z 

PA(x,y,z) 

ArBr

PB(x,y,z) ÂBa
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Vector Field Notation 
 
A vector field describes a vector value at every location in 
space.  Therefore, we can denote a vector field as A(x,y,z), or 
A( , ,zρ φ ), or A( , ,r θ φ ), explicitly showing that vector quantity 
A is a function of position, as denoted by some set of 
coordinates. 
 
However, as we have emphasized before, the physical reality 
that vector field A expresses is independent of the 
coordinates we use to express it.  In other words, although 
the math may look very different, we find that: 
 

A(x,y,z) = A( , ,zρ φ ) = A( , ,r θ φ ). 
 
Alternatively then, we typically express a vector field as 
simply: 
 

( )rA  
 

 
This symbolically says everything that we need to convey; 
vector A is a function of position—it is a vector field! 
 
Note that the vector field notation ( )rA  does not explicitly 
specify a coordinate system for expressing A.  That’s up to 
you to decide! 
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Now, in the vector field expression ( )rA  we note that there 
are two vectors: A and r .   It is ridiculously important that 
you understand what each of these two vectors represents!  
 
 

Position vector r  denotes the location in space where 
vector A is defined. 

 
 
For example, consider the vector field ( )rV , which describes 
the wind velocity across the state of Kansas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this map, the origin has been placed at Lawrence.  The 
locations of Kansas towns can thus be identified using position 
vectors (units in miles): 

1( )rV
1r

2r

4r

5r

2( )rV

3( )rV

5( )rV
4( )rV

x̂a
ŷa

3r
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ˆ ˆ1r 400 20x ya a= − +    the location of Goodland, KS 
  

ˆ ˆ2r 90 70x ya a= − +    the location of Marysville, KS 
 

ˆ ˆ3r 30 5x ya a= −    the location of Fort Scott,KS 
 

ˆ ˆ4r 40 90x ya a= −    the location of Fort Scott,KS 
 

ˆ ˆ5r 130 70x ya a= − −    the location of Newton, KS 
 

 
Evaluating the vector field ( )rV  at these locations provides 
the wind velocity at each Kansas town (units of mph). 
 

ˆ ˆ)1(r 15 17     x ya a= −V  the wind velocity in Goodland, KS 
 

ˆ ˆ)2(r 15 9      x ya a= −V  the wind velocity in Marysville, KS 
 

ˆ)3(r 11            xa=V   the wind velocity in Olathe, KS 
 

ˆ)4(r 7             xa=V   the wind velocity in Fort Scott, KS 
 

ˆ ˆ)5(r 9 4     x ya a= −V  the wind velocity in Newton, KS 
 

Remember, a vector field ( )rA  describes the magnitude and 
direction of the vector A that is located at the point defined 
by position vector r . 
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Vector A does not “extend” from the origin to the point 
described by position vector r .  Rather, the vector A 
describes a quantity at that point, and that point only.  The 
magnitude of vector A does not have units of distance!  The 
length of the arrow that represents vector A is merely 
symbolic—its length has no direct physical meaning. 
 
On the other hand, the position vector r , being a directed 
distance, does extend from the origin to a specific point in 
space. The magnitude of a position vector r  is distance—the 
length of the position vector arrow has a direct physical 
meaning. 
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A Gallery of Vector Fields 
 
 
To help understand how a vector field relates to its 
mathematical representation using base vectors, carefully 
examine and consider these examples, plotted on either the  
x-y plane (i.e, the plane with all points whose coordinate z=0) 
or the x-z plane (i.e, the plane with all points whose 
coordinate y=0). 
 
Spend some time studying each of these examples, until you 
see how the math relates to the vector field plot and vice 
versa. 
 
 

Remember, vector fields—
expressed in terms of 
scalar components and base 
vectors—are the 
mathematical language that 
we will use to describe much 
of electromagnetics—you 
must learn how to speak 
and interpret this language! 
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r x
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