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3-5 Two Action-at-a-Distance Laws 
 

Reading Assignment: pp. 71-75 
 
A. Coulomb’s Law of Force 
 
Q:  
 
A:  
 
 
  
HO:  Coulomb’s Law 
 
HO: The Vector Form of Coulomb’s Law 
 
B. Ampere’s Law of Force 
 
 
 
 
 
HO: Ampere’s Law of Force 
 
Example: Ampere’s Law of Force   
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Coulomb’s Law of Force 
 
Consider two point charges, Q1 and Q2, located at positions 1r  
and 2r , respectively. 
 
We will find that each charge 
has a force F (with magnitude 
and direction) exerted on it. 
 
This force is dependent on both 
the sign (+ or -) and the 
magnitude of charges Q1 and Q2, 
as well as the distance R 
between the charges. 
 
Charles Coulomb determined this relationship in the 18th 
century!  We call his result Coulomb’s Law: 
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R
1 2

1 212
0

1
4

F  

 
 
This force F1 is the force exerted on charge Q1 .  Likewise, the 
force exerted on charge Q2  is equal to: 
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In these formula, the value ε0  is a constant that describes the 
permittivity of free space (i.e., a vacuum). 
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Note the only difference between the equations for forces F1 
and F2 are the unit vectors â21  and â12 . 
 
* Unit vector â21  points from the location of Q2 (i.e., 2r ) to the 

location of charge Q1 (i.e., 1r ). 
 

* Likewise, unit vector â12 points from the location of Q1 (i.e., 

1r ) to the location of charge Q2 (i.e., 2r ). 
 
Note therefore, that these unit vectors point in opposite 
directions, a result we express mathematically as = −ˆ ˆa a21 12 . 
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Therefore we find: 
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Look! Forces F1 and F2 have equal magnitude, but point in 
opposite directions ! 
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Note in the case shown above, both charges were positive. 
 
 
 

Q:  What happens when one of the charges is 
negative?  
 
A:  Look at Coulomb’s Law !  If one charge is positive, 
and the other is negative, then the product Q1 Q2 is 
negative.  The resulting force vectors are therefore 
negative—they point in the opposite direction of the 
previous (i.e., both positive) case! 
 
 
 
 

Therefore, we find that: 
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What about this case ? 
 
 
 
 
 
 
 
 
 
 
 
 
We come to the important conclusion that: 
 

1)  charges of opposite sign attract. 
 
2)  charges with the same sign repel. 

_ _ 

Charles-Augustin de Coulomb (1736-1806), 
a military civil engineer, retired from the French 
army because of ill health after years in the West
Indies. Forced from Paris by the disturbances of 
the revolution, he began working at his family 
estate and discovered that the torsion 
characteristics of long fibers made them ideal for
the sensitive measurement of magnetic and 
electric forces. He was familiar with Newton's 
inverse-square law and in the period 1785-1791 
he succeeded in showing that electrostatic forces 
obey the same rule. (from 
www.ee.umd.edu/~taylor/frame1.htm) 
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The Vector Form of  
Coulomb’s Law of Force 

 
The position vector can be used to make the calculations of 
Coulomb’s Law of Force more explicit.  Recall: 
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R
1 2

1 212
0

1
4

F  

Specifically, we ask ourselves the question: how do we 
determine the unit vector 2̂1a  and distance R ?? 
 

* Recall the unit vector 2̂1a  is a unit vector directed from 
Q2 toward Q1, and R is the distance between the two 
charges. 

 
* The directed distance vector 21 21ˆR a=R  can be 

determined from the difference of position vectors 1r  
and 2r . 
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This directed distance 21 1 2r r= −R  is all we need to determine 
both unit vector 2̂1a  and distance R  (i.e., 21 21ˆR a=R )! 
 
For example, since the direction of directed distance R21 is 
equal to 2̂1a , we can explicitly find this unit vector by dividing R21 

by its magnitude: 
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Likewise, the distance R between the two charges is simply the 
magnitude of directed distance R21 ! 
 
 

21 1 2r  - rR = =R  
 
 

Using these expressions, we find that we can express Coulomb’s 
Law entirely in terms of R21, the directed distance relating the 
location of Q1 with respect to Q2: 
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Explicitly using the relation 21 1 2r r= −R , we find: 
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We of course could likewise define a directed distance: 
 

12 2 1r r= −R  
 

which relates the location of Q2 with respect to Q1.  
 
We can thus describe the force on charge Q2 as: 
 

1 2 12
2 3

0 12

1 2 2 1
3

0 2 1

4

4

Q Q

Q Q r r
r r

πε

πε

=

−
=

−

RF
R

 

 
Note since R12 = -R21  (thus |R12| = |R21|), we again find that: 
 

2 1= −F F  
 

The forces on each charge have equal magnitude but opposite 
direction. 

See Example 3-3 on pages 72-73 ! 
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Ampere’s Law of Force 
 
Consider the case of two current filaments located in space. 
 
One filament has current I1

 flowing along differential 
displacement distance d 1 , while the other has current I2

 

flowing along d 2 . 
 

We find that each current 
filament exerts force d Fon 
the other! 
 
The force depends on the 
magnitude and direction of 
each filament vector (I d ), 
as well as on the distance R 
between the two currents. 
 

Andre Ampere determined this relationship in the 18th century, 
and we call his result Ampere’s Law of Force: 
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Q:  Yikes! What the heck does this mean ? 
 
A:  Well,: 
 
 *  The unit vector â21  is the unit vector directed from 
filament 2 to filament 1 (just like Coulomb’s Law). 
 
*  The constant µ0  is the permeability of free space, 
given as: 

µ π ⎡ ⎤= =⎢ ⎥⎣ ⎦

Henry/
meter

-7 2
0 4 x 10 N A  

 
*  The force d 1F  is the force exerted on filament 1 by 
filament 2. 
 
 
 
 
Q:  O.K., but what about: 
 

( )ˆI d I d1 1 2 2 21x x a     ?!? 

 
A: Using equation B.2 of your book (p. 639), we can 
rewrite this in terms of the dot product! 
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( ) ( ) ( )= ⋅ − ⋅ˆ ˆ ˆI d I d d d d d1 1 2 2 21 1 21 2 1 2 21x x a a a  

 
 

Therefore, we can also write Ampere’s Law  
of Force as: 
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See! Didn’t that help? 
 
Perhaps not.  To interpret the result above, we need to look at 
several examples. 
 
But first, let’s examine one very important property of 
Ampere’s Law of Force.  Consider the force on filament 2 by 
filament 1—exactly the opposite case considered earlier.  
 
We find from Ampere’s Law of force: 
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Note in the numerator there are two vector terms. Let’s 
compare them.   

??? 
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We find that the second terms in each force expression have 
equal magnitude but opposite direction, because = −ˆ ˆa a12 21 . 
 

( ) ( )1 2 21 2 1 12a aˆ ˆd d d d⋅ = − ⋅  

 
However, the first vector terms in each expression are related 
in neither magnitude nor direction ! 
 

( ) ( )1 21 2 2 12 1a aˆ ˆd d d d⋅ ≠ ⋅  

 
Therefore, we discover that, in general, the force 1d F  on 
filament 1, and the force 2d F  on filament 2 are not related in 
either magnitude or in direction: 
 

1 2d d≠F F  
 
In fact, we can have situations where the force on one element 
is zero, while the force on the other element is not! 
 
This, of course, is much different than Coulomb’s Law of 
Force, where we found that 1 2= −F F  always. 
 
 André-Marie Ampère (1775-1836) was a child prodigy whose 

early life was marred by tragedy: Ampère's father was beheaded 
in his presence during the Revolution and, later, his wife died four 
years after their marriage. As a scientist, Ampère had flashes of 
inspiration which he would pursue to their conclusion. When he 
learned of Ørsted's discovery in 1820 that a magnetic needle is 
deflected by a varying nearby current, he prepared within a week 
the first of several papers on the theory of this phenomenon, 
formulating the law of electromagnetism (Ampère's law) that 
describes mathematically the magnetic force between two 
circuits. (from www.ee.umd.edu/~taylor/frame3.htm) 
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Example: Ampere’s  
Law of Force 

 
Let’s again consider Ampere’s Law of Force in the following 
form: 
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It is apparent that we can consider the force on filament 1 to 
consist of two forces, i.e.: 
 

1 11
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Therefore, the force on filament 1 has a component in the 
direction 2d  (i.e., in the direction of current filament 2), and a 
component in the direction 21a−ˆ . 
 
 
 
 
 
 
 
 
So, let’s consider several examples: 
 
Example 1: Filament 2 points toward filament 1 
 
 
 
 
 
 
 
Therefore, since 2 2 21ˆd d a= : 
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In other words, if filament 2 points at filament 1, then the 
force on filament 1 is zero, regardless of the orientation of 
filament 1. 
 
Another way of saying this is that only the component of 22I d  
that is orthogonal to 21â  can exert of force on filament 1. 
 
 
 
 
 
 
 
 
 
 
 

Example 2:  Filament 1 is parallel to filament 2 
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Normal 
component 
exerts force. 

Tangential 
component 
exerts no force. 
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Therefore,  
ˆ1 21 0d a⋅ =  
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Thus, 1 1

bd d=F F , applying a force in the direction 21â−  ! 
 
 
 
 
 
 
Filament 1 is attracted to filament 2 ! 
 
For the same reasons, filament 2 is attracted to filament 1: 
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But, we find that  the two filaments repel if they point in 
opposite directions: 
 
 
 
 
 
 
Example 3:  Filament 1 is parallel to 21â  and orthogonal to 
filament 2. 
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Therefore, 1 1
ad d=F F , applying a force in the direction 2d  : 

 
 
 
 
 
 
 
 

Note however,  the force on filament 2 is zero ! 
 
Example 4:  Filament 1 is orthogonal to 21â  and orthogonal to 
filament 2. 
 
 
 
 
 
 
 
 

 
In this case, we find: 

ˆ1 21 0d a⋅ =  
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Likewise, 
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page. 
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Therefore, the total force on filament 1 is zero: 
 

1 11 0a bdd d= + =FFF  
 

For the same reasons, we find that the force on filament 2 due 
to filament 1 is also zero (i.e., 2 0d =F ). 


