2.4 Orthogonal Coordinate Systems

Reading Assignment: pp.16-33

We live in a 3-dimensional world!

Meaning:

1.

1)

2)

Q: What 3 scalar values and what 3 unit vectors do we use ??

A: We have several options! A set of 3 scalar values that define position and a set of unit vectors that define direction form a **Coordinate system**. Examples of coordinate systems include:

A. Coordinates

* The 3 scalar values used to define position are called coordinates.

* E.G., scalar values u_1 , u_2 , and u_3 can define precisely the **location** of point P in space (i.e., P(u_1 , u_2 , u_3)).

* All coordinates are defined with respect to an **arbitrary** point called the **origin**.

HO: Cartesian Coordinates

HO: Cylindrical Coordinates

HO: Spherical Coordinates

B. Coordinate Transformations

We can rewrite the **location** of point P(x,y,z) in terms of cylindrical coordinates (i.e., $P(r, \theta, \phi)$), for example.

Or, we can rewrite a scalar field g(x,y,z) in terms of cylindrical coordinates (i.e, $g(\rho,\phi,z)$), for example.

HO: Coordinate Transformations

Example: Coordinate Transformations

C. Base Vectors

* The 3 unit vectors used to define direction are called base vectors.

* E.G., base vectors $\hat{a}_1, \hat{a}_2, \hat{a}_3$ can be used to precisely describe the **direction** of some vector A.

HO: Base Vectors

HO: Cartesian Base Vectors

or

D. Vector Expansion using Base Vectors

Q: Why are base vectors important? How are they used?

A: We find that any and **all** vectors can be expressed as the **sum** of **3** vectors, each pointing in the precise **direction** of one of the three base vectors!

e.g., $\mathbf{B} = B_1 \, \hat{a}_1 + B_2 \, \hat{a}_2 + B_3 \, \hat{a}_3$

 $\boldsymbol{C} = \boldsymbol{C}_{\boldsymbol{x}} \, \hat{\boldsymbol{a}}_{\boldsymbol{x}} + \boldsymbol{C}_{\boldsymbol{y}} \, \hat{\boldsymbol{a}}_{\boldsymbol{y}} + \boldsymbol{C}_{\boldsymbol{z}} \, \hat{\boldsymbol{a}}_{\boldsymbol{z}}$

HO: Vector Expansion using Base Vectors

E. Spherical and Cylindrical Base Vectors

HO: Spherical Base Vectors

HO: Cylindrical Base Vectors

F. Vector Algebra and Vector Expansions

HO: Vector Algebra using Orthonormal Base Vectors

- G. The Vector Field
- * Recall a vector **field** is a function of **position**.
- * We express position in terms of coordinates.
- * Thus, a vector field is **function** of coordinate values (e.g., *x, y, z*).
- * But, we express a vector field with **3 scalar** components.

HO: Vector Fields

HO: Expressing Vector Fields with Coordinate

<u>Systems</u>

H. The Position Vector

In addition to coordinates (e.g., r, θ, ϕ), we can use a special **directed distance** to specify points in space.

HO: The Position Vector

HO: Applications of the Position Vector

HO: Vector Field Notation

HO: A Gallery of Vector Fields