2.4 Orthogonal Coordinate Systems

Reading Assignment: pp.16-33
We live in a 3-dimensional world!
Meaning:
1)
2)

Q: What 3 scalar values and what 3 unit vectors do we use ??

A: We have several options! A set of 3 scalar values that define position and a set of unit vectors that define direction form a Coordinate system. Examples of coordinate systems include:
1.
2.
3.

A. Coordinates

* The 3 scalar values used to define position are called coordinates.
* E.G., scalar values u_{1}, u_{2}, and u_{3} can define precisely the location of point P in space (i.e., $P\left(u_{1}, u_{2}, u_{3}\right)$).
* All coordinates are defined with respect to an arbitrary point called the origin.

HO: Cartesian Coordinates

HO: Cylindrical Coordinates

HO: Spherical Coordinates
B. Coordinate Transformations

We can rewrite the location of point $P(x, y, z)$ in terms of cylindrical coordinates (i.e, $P(r, \theta, \phi)$), for example.

Or, we can rewrite a scalar field $g(x, y, z)$ in terms of cylindrical coordinates (i.e, $g(\rho, \phi, z)$), for example.

HO: Coordinate Transformations

Example: Coordinate Transformations
C. Base Vectors

* The 3 unit vectors used to define direction are called base vectors.
* E.G., base vectors $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ can be used to precisely describe the direction of some vector A.

HO: Base Vectors

HO: Cartesian Base Vectors

D. Vector Expansion using Base Vectors

Q: Why are base vectors important? How are they used?

A: We find that any and all vectors can be expressed as the sum of 3 vectors, each pointing in the precise direction of one of the three base vectors!
e.9.,

$$
B=B_{1} \hat{a}_{1}+B_{2} \hat{a}_{2}+B_{3} \hat{a}_{3}
$$

or

$$
c=C_{x} \hat{a}_{x}+C_{y} \hat{a}_{y}+C_{z} \hat{a}_{z}
$$

HO: Vector Expansion using Base Vectors

E. Spherical and Cylindrical Base Vectors

HO: Spherical Base Vectors

HO: Cylindrical Base Vectors

F. Vector Algebra and Vector Expansions

HO: Vector Algebra using Orthonormal Base Vectors

G. The Vector Field

* Recall a vector field is a function of position.
* We express position in terms of coordinates.
* Thus, a vector field is function of coordinate values
(e.g., x, y, z).
* But, we express a vector field with 3 scalar components.

HO: Vector Fields

HO: Expressing Vector Fields with Coordinate Systems
H. The Position Vector

In addition to coordinates (e.g., r, θ, ϕ), we can use a special directed distance to specify points in space.

HO: The Position Vector

HO: Applications of the Position Vector

HO: Vector Field Notation

HO: A Gallery of Vector Fields

