3-7 Maxwell's Equations

Reading Assignment: pp. 81-84

Q:

A:

HO: Maxwell's Equations

Jim Stiles The Univ. of Kansas Dept. of EECS

Maxwell's Equations

Consider what we now know:

- 1) Law of Charge Conservation
- 2) Coulomb's Law of Force
- 3) Ampere's Law of Force
- 4) Lorentz Force Law

These are all valid laws, but they are **not complete**. That is, they do not completely describe the relationships between $J(\bar{r})$, $\rho_{\nu}(\bar{r})$, $B(\bar{r})$, and $E(\bar{r})$.

In 1873, James Clerk Maxwell published a book on electromagnetics, which included a complete, unified theory.

This theory includes 4 equations relating $\mathbf{J}(\overline{r},t)$, $\rho_{\nu}(\overline{r},t)$, $\mathbf{B}(\overline{r},t)$, and $\mathbf{E}(\overline{r},t)$, called Maxwell's Equations.

$$\nabla \mathbf{x} \mathbf{E} \left(\overline{\mathbf{r}}, t \right) = -\frac{\partial \mathbf{B} \left(\overline{\mathbf{r}}, t \right)}{\partial t}$$

$$\nabla \cdot \mathbf{E}(\overline{\mathbf{r}}, t) = \frac{\rho_{\nu}(\overline{\mathbf{r}}, t)}{\varepsilon_{0}}$$

$$\nabla \mathbf{x} \mathbf{B} (\overline{\mathbf{r}}, t) = \mu_0 \mathbf{J} (\overline{\mathbf{r}}, t) + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E} (\overline{\mathbf{r}}, t)}{\partial t}$$

$$\nabla \cdot \mathbf{B} \left(\overline{\mathbf{r}}, t \right) = 0$$

From Helmholtz's Theorems, we know that we must know both the divergence and the curl of a vector field in order to determine the vector field.

Note Maxwell's Equation does this for both the electric field $E(\overline{r},t)$ and magnetic flux density $B(\overline{r},t)$!

Q: Is the magnetic flux density $B(\bar{r},t)$ conservative, solenoidal, or neither?

A:

- * Since the divergence of the magnetic flux density is zero $(\nabla \cdot \mathbf{B}(\overline{r},t) = 0)$, it is a solenoidal vector field.
- * Thus, all the things that we learned about solenoidal fields are true for the magnetic flux density $\mathbf{B}(\overline{r},t)$.
- * Likewise, the sources of this rotational field appear to be current (i.e., $\mu_0 \mathbf{J}(\overline{\mathbf{r}},t)$), and/or a time-varying electric field:

$$\nabla \mathbf{x} \mathbf{B}(\overline{\mathbf{r}}, t) = \mu_0 \mathbf{J}(\overline{\mathbf{r}}, t) + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}(\overline{\mathbf{r}}, t)}{\partial t}$$

Note that permittivity ε_0 and permeability μ_0 of free space appear also in Maxwell's Equations!

Q: Is the electric field $\mathbf{E}(\overline{r},t)$ conservative, solenoidal, or neither?

A:

- * Since **neither** the curl **nor** the divergence of the electric field is zero, the electric field is **neither** conservative **nor** solenoidal.
- * Instead, it is apparent that the electric field has both a solenoidal and conservative vector component!
- * The source of the solenoidal component of the electric field $E(\overline{r},t)$ appears to be a time-varying magnetic flux density:

$$\nabla x \mathbf{E}(\overline{\mathbf{r}}, t) = -\frac{\partial \mathbf{B}(\overline{\mathbf{r}}, t)}{\partial t}$$

* Whereas the source of the conservative component of $E(\overline{r},t)$ appears to be charge:

$$\nabla \cdot \mathbf{E}(\overline{\mathbf{r}}, t) = \frac{\rho_{\nu}(\overline{\mathbf{r}}, t)}{\varepsilon_{0}}$$

Q: But, what else do Maxwell's Equations mean?

A: They mean that the rest of the semester will be very busy!