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5-3 Dielectrics 
 
Reading Assignment:  pp. 132-149 
 
Recall that if a dielectric material is immersed in an 
electric field, each atom/molecule in the material will 
form an electric dipole! 
 
 
 
 
HO:  The Polarization Vector   
 
 
A.  Polarization Charge Distribution 
 
 
 
 
 
Q:  
 
A:  HO: Polarization Charge Distributions 
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B. Electric Flux Density 
 
 
 
 
 
 
 
HO:  Electric Flux Density 
 
C. Field Equations in Dielectrics 
 
Q:  
 
 
A:  HO: Electrostatic Field Equations in Dielectrics 
 
D. Electric Boundary Conditions 
 
Q:   
 
 
 
 
 
 1ε

( ) ( )1 1,r rD E

2ε

( ) ( )2 2??, ??r r= =D E
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A:  
 
HO: Dielectric Boundary Conditions 
 
HO: Boundary Conditions on Perfect Conductors 
 
Example:  Dielectric Boundary Conditions 
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The Polarization Vector 
 
Recall that in dielectric materials (i.e., insulators), the charges 
are bound. 
 
 
 
 
 
 
 
 
 
 
 

As a result, atoms/molecules form electric dipoles when an 
electric field is present! 
 
Note that even for some small volume v∆ , there are many 
atoms/molecules present; therefore there will be many electric 
dipoles. 

+ - ( )rE
p

( )rE
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We will therefore define an average dipole moment, per unit 
volume, called the Polarization Vector ( )rP . 
 
 

( ) 2
dipole momentr       

unit volume
n C

v m
⎡ ⎤=⎢ ⎥∆ ⎣ ⎦

∑p
P  

 
 

where np is one of N  dipole moments in volume v∆ , centered at 
position r .  Note the polarization vector is a vector field.  As a 
result, the direction and magnitude of the Polarization vector 
can change as function of position (i.e., a function of r ). 
 
Q:  How are vector fields ( )rP  and ( )rE  related?? 
 
A:  Recall that the direction of each dipole moment is the same 
as the polarizing electric field.  Thus ( )rP  and ( )rE  have the 
same direction.  There magnitudes are related by a unitless 
scalar value ( )e rχ , called electric susceptibility: 
 
 
 

( ) ( ) ( )0 er r rε χ=P E  
 
 
 
Electric susceptibility is a material parameter indicating the 
“stretchability” of the dipoles. 
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Q:  Can we determine the fields created by a polarized 
material? 
 
A:  Recall the electric potential field created by one dipole is: 
 

( ) ( )
3

0

r-rr
4 r-r

V
πε

′⋅
=

′
p  

 
Therefore, using ( )d r dv=p P , the electric potential field 
created by a distribution of dipoles (i.e., ( )rP ) across some 
volume V  is (see fig. 5.9): 
 
 

( ) ( ) ( )
3

0

r r-rr
4 r-rV

V dv
πε

′ ′⋅
′=

′∫∫∫
P  

 
 
 
 
 
 
 
 
 
 
 
 

A:   As we will soon see, the polarization vector ( )rP  
creates equivalent charge distributions—we will get the 
correct answer for ( )rV  from either source! 

Q: But I thought scalar 
charge distributions ( )rvρ  
and ( )rsρ  created the 
electric potential field 
( )rV . Now you are saying 

that electric fields are 
created by the vector field  
( )rP  !?! 
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Polarization Charge 
Distributions 

 
Consider a hunk of dielectric material with volume V. 
 
Say this dielectric material is immersed in an electric field 
( )rE , therefore creating atomic dipoles with density ( )rP . 

 
Q:  What electric potential field ( )rV  is created by 
these diploes? 
 
A:  We know that: 
 

( ) ( ) ( )
3

0

r r-rr
4 r-rV

V dv
πε

′ ′⋅
′=

′∫∫∫
P  

 
But, it can be shown that (p. 135): 
 

( ) ( ) ( )

( ) ( ) ( )

3
0

0 0

r r-rr
4 r-r

r r r1 1
4 r-r 4 r-r

ˆ
V

n

V S

V dv

adv ds

πε

πε πε

′ ′⋅
′=

′

′ ′−∇ ⋅ ⋅
′ ′= +

′ ′

∫∫∫

∫∫∫ ∫∫

P

P P
 

 
where S is the closed surface that surrounds volume V, and 

( )rˆ na  is the unit vector normal to surface S (pointing outward). 
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This complicated result is only important when we compare it to  
the electric potential created by volume charge density ( )rvρ  
and surface charge density ( )rsρ : 
 

( ) ( )
0

r1r
4 r-r

v

V
V dvρ

πε
′

′=
′∫∫∫  

 

( ) ( )
0

r1r
4 r-r

s

S

V dsρ
πε

′
′=

′∫∫  

If both volume and surface charge are present, the total 
electric potential field  is: 
 

( ) ( ) ( )
0 0

r r1 1r
4 r-r 4 r-r

v s

V S
V dv dsρ ρ

πε πε
′ ′

′ ′= +
′ ′∫∫∫ ∫∫  

 
Compare this expression to the previous integral involving the 
polarization vector ( )rP . It is evident that the two expressions 
are equal if the following relations are true: 
 
 

( ) ( )r rvpρ = −∇ ⋅P  
 
 

and  
 

( ) ( )r r ˆsp naρ = ⋅P  
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The subscript p (e.g., , vp spρ ρ ) indicates that these functions 
represent equivalent charge densities due to the due to the 
dipoles created in the dielectric. 
 
In other words, the electric potential field ( )rV  (and thus 
electric field ( )rE ) created by the dipoles in the dielectric (i.e., 
( )rP ) is indistinguishable from the electric  potential field 

created by the equivalent charge densities ( ) ( )r  and rvp spρ ρ ! 
 
For example, consider a dielectric material immersed in an 
electric field, such that its polarization vector ( )rP  is: 
 

( ) 2
Cr 3    
m

ˆ za ⎡ ⎤= ⎢ ⎥⎣ ⎦
P  

 

ˆ za ( )rE
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Note since the polarization vector is a constant, the equivalent 
volume charge density is zero: 
 

( ) ( )r r
3

0
ˆ

vp

za
ρ = −∇ ⋅

= −∇ ⋅

=

P
 

 
On the top surface of the dielectric (ˆ ˆn za a= ), the equivalent 
surface charge is: 
 

( ) ( )

2

r r
3

3             

ˆ

ˆ ˆ
sp n

z z

a
a a

C
m

ρ = ⋅

= ⋅

⎡ ⎤= ⎢ ⎥⎣ ⎦

P
 

 
On the bottom of the dielectric (ˆ ˆn za a= − ), the equivalent 
surface charge is: 
 

( ) ( )

2

r r
3

3             

ˆ

ˆ ˆ
sp n

z z

a
a a

C
m

ρ = ⋅

= − ⋅

⎡ ⎤= − ⎢ ⎥⎣ ⎦

P
 

 
On the sides of the dielectric material, the surface charge is 
zero, since 0ˆ ˆz na a⋅ = . 
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This result actually makes physical sense!  Note at the top of 
dielectric, there is a layer of positive charge, and at the 
bottom, there is a layer of negative charge. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
In the middle of the dielectric, there are positive charge 
layers on top of negative charge layers.  The two add together 
and cancel each other, so that equivalent volume charge density 
is zero. 
 
Finally, recall that there is no perfect dielectric, all materials 
will have some non-zero conductivity ( )rσ . 
 
As a result, we find that the total charge density within some 
material is the sum of the polarization charge density and the 
free charge (i.e., conducting charge) density: 

ˆ za

23 C/mspρ =

23 C/mspρ = −

0vpρ =
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( ) ( ) ( )v vpvT r r rρ ρ ρ= +  
 
 

Where: 
 

( )

( )

( )

total charge density

free charge density

polarization charge density

vT

v

vp

r

r

r

ρ

ρ

ρ

 

 
 

This is likewise (as well as more frequently!) true for surface 
charge density: 
 
 
 

( ) ( ) ( )s spsT r r rρ ρ ρ= +  
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Electric Flux Density 
 
Yikes!  Things have gotten complicated!   
 
In free space, we found that charge ( )rvρ  creates an electric 
field ( )rE .   
 
Pretty simple!    ( )rvρ               ( )rE  
 
But, if dielectric material is present, we find that charge ( )rvρ  
creates an initial electric field ( )riE . This electric field in turn 
polarizes the material, forming bound charge ( )rvpρ .  This 
bound charge, however, then creates its own electric field 

( )rsE  (sometimes called a secondary field), which modifies the 
initial electric field! 
 
Not so simple!    ( )rvρ            ( )riE             ( )rvpρ             ( )rsE     
 
The total electric field created by free charge when dielectric 
material is present is thus ( ) ( ) ( )r r rsi= +E E E . 
 

Q: Isn’t there some easier way to account for the 
effect of dielectric material?? 

 
A:  Yes there is!  We use the concept of dielectric 

permittivity, and a new vector field called the 
electric flux density ( )rD . 
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To see how this works, first consider the point form of Gauss’s 
Law: 

( ) ( )
0

rr vTρ
ε

∇ ⋅ =E  

 
where ( )rvTρ  is the total charge density, consisting of both the 
free charge density ( )rvρ  and bound charge density ( )rvpρ : 
 

( ) ( ) ( )r r rv vpvTρ ρ ρ= +  
 

Therefore, we can write Gauss’s Law as: 
 

( ) ( ) ( )0 r r rv vpε ρ ρ∇ ⋅ = +E  
 

Recall the bound charge density is equal to: 
 

( ) ( )r rvpρ = −∇ ⋅ P  
 

Inserting into the above equation: 
 

( ) ( ) ( )0 r r rvε ρ∇ ⋅ = − ∇ ⋅E P  
 

And rearranging: 
 

( ) ( ) ( )
( ) ( ) ( )

0

0

r r r
r r r

v

v

ε ρ

ε ρ

∇ ⋅ + ∇ ⋅ =

∇ ⋅ + =⎡ ⎤⎣ ⎦

E P
E P
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Note this final result says that the divergence of vector field 
( ) ( )0 r rε +E P  is equal to the free charge density ( )rvρ .  Let’s 

define this vector field the electric flux density ( )rD : 
 
 
 

( ) ( ) ( ) 20
Celectric flux density   r r r    mε ⎡ ⎤+ ⎢ ⎥⎣ ⎦

D E P  

 
 

 
Therefore, we can write a new form of Gauss’s Law: 
 
 

( ) ( )r rvρ∇ ⋅ =D  
 
 

This equation says that the electric flux density ( )rD  diverges 
from free charge ( )rvρ .  In other words, the source of electric 
flux density is free charge ( )rvρ --and free charge only!   
 
 

*  The electric field ( )rE  is created by both free 
charge and bound charge within the dielectric material. 
 
*  However, the electric flux density ( )rD  is created by 
free charge only—the bound charge within the 
dielectric material makes no difference with regard to 
( )rD ! 

 



11/4/2004 Electric Flux Density.doc 4/5 

Jim  Stiles The Univ. of Kansas Dept. of EECS 

But  wait! We can simplify this further.  Recall that the 
polarization vector is related to electric field by susceptibility 

( )reχ : 
 

( ) ( ) ( )0r r reε χ=P E  
 
 

Therefore the electric flux density is: 
 

( ) ( ) ( ) ( )
( )( ) ( )

e0 0

e0

   r r r r
1 r  r

 

ε ε χ

ε χ

= +

= +

D E E
E  

 
We can further simplify this by defining the permittivity of the 
medium (the dielectric material): 
 

( ) ( )( )0permittivity r 1 reε ε χ+  
 
 

And can further define relative permittivity: 
 
 

( ) ( ) ( )
0

rrelative permittivity r 1 rr e
ε

ε χ
ε

= +  

 
 

 
Note therefore that ( ) ( ) 0r rrε ε ε= . 
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We can thus write a simple relationship between electric flux 
density and electric field: 
 
 

( ) ( ) ( )
( ) ( )0

r r r
r rr

ε

ε ε

=

=

D E
E

 

 
 

Like conductivity ( )rσ , permittivity ( )rε  is a fundamental 
material parameter.  Also like conductivity, it relates the 
electric field to another vector field. 
 
Thus, we have an alternative way to view electrostatics: 
 

1.  Free charge ( )rvρ  creates electric flux density ( )rD . 
 
2.  The electric field can be then determined by simply 

dividing ( )rD  by the material permittivity ( )rε  (i.e., 
( ) ( ) ( )r r rε=E D ). 

 
 

( )rvρ                ( )rD              ( )rE  
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Electrostatic Field 
Equations in Dielectrics 

 
The electrostatic equations for fields in dielectric materials 
are: 
 
 

( )x r 0∇ =E  
 

( ) ( )r rvρ∇ ⋅ =D  
 

( ) ( ) ( )r r rε=D E  
 
 
 

In integral form, these equations are: 
 
 
 

( )r 0
C

d⋅ =∫ E  

 
( )r enc

S
ds Q⋅ =∫∫D  

 
( ) ( ) ( )r r rε=D E  
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Likewise, for free charge located in some homogeneous (i.e., 
constant) material with permittivity ε , we get the following 
relations: 
 

( ) r-rr    (for point charge Q)
4 r-r
Q
επ

′
=

′
E  

 
 

( ) ( )r1r
4 r-r

v

V
V dv

ε
ρ

π
′

′=
′∫∫∫  

 

( ) ( )2 rr vV
ε

ρ−
∇ =  

 
In other words, for homogenous materials, replace 0ε  (the 
permittivity of free-space) with the more general permittivity 
value ε . 
 
Pretty simple ! 
 
For example: 
 

If the media is free-space, use the permittivity of free-
space. 
 
If the media is, for example, plastic, then use the 
permittivity of plastic. 
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Dielectric Boundary 
Conditions 

 
Consider the interface between two dissimilar dielectric 
regions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Say that an electric field is present in both regions, thus 
producing also an electric flux density ( ( ) ( )r rε=D E ). 
 

Q:  How are the fields in dielectric region 1 (i.e., 
( ) ( )1 1r , rΕ D ) related to the fields in region 2 (i.e., 
( ) ( )2 2r , rΕ D )? 

 
A: They must satisfy the dielectric boundary 
conditions ! 

( ) ( )1 1r , rΕ D

( ) ( )2 2r , rΕ D

1ε

2ε
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First, let’s write the fields at the dielectric interface in terms 
of their normal ( ( )rnE ) and tangential ( ( )rtE ) vector 
components: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our first boundary condition states that the tangential 
component of the electric field is continuous across a boundary.  
In other words: 
 
 

( ) ( )1 2r rt b t b=E E  
 
 
 

where rb denotes  any point on the boundary (e.g., dielectric 
interface). 
 
 
 

( ) ( ) ( )1 1 1r r rt n= +Ε Ε Ε( )1 rnΕ

1ε

2ε

ˆ na ( )1 rtΕ

( )2 rtΕ
( )2 rnΕ

( ) ( ) ( )2 2 2r r rt n= +Ε Ε Ε
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                   The tangential component of the electric field at 
one side of the dielectric boundary is equal to the tangential 
component at the other side ! 
 
We can likewise consider the electric flux densities on the 
dielectric interface in terms of their normal and tangential 
components: 
 
 

 
 
 
 
 
 
 
 
 
 
 

The second dielectric boundary condition states that the 
normal vector component of the electric flux density is 
continuous across the dielectric boundary.  In other words: 
 
 

( ) ( )1 2r rn b n b=D D  
 
 

where rb denotes any point on the dielectric boundary (i.e., 
dielectric interface). 

( ) ( )1 1 1r rε=D Ε( )1 rnD

1ε

2ε

ˆ na ( )1 rtD

( )2 rtD

( )2 rnD
( ) ( )2 2 2r r=D Εε
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Since ( ) ( )r r=D Εε , these boundary conditions can likewise be 
expressed as: 
 

( ) ( )

( ) ( )

1 2

1 2

1 2

r r

r r

t b t b

t b t b

=

=

E E

D D
ε ε

 

 
 
 

and as: 
 
 

( ) ( )

( ) ( )

1 2

1 1 2 2

r r

r r

n b n b

n b n b

=

=

D D

E Eε ε

 

 
 

 
MAKE SURE YOU UNDERSTAND THIS: 
 
These boundary conditions describe the relationships of the 
vector fields at the dielectric interface only (i.e., at points 

br r= )!!!!  They say nothing about the value of the fields at 
points above or below the interface. 
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Boundary Conditions on 
Perfect Conductors 

 
Consider the case where region 2 is a perfect conductor: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Recall ( )r 0=E  in a perfect conductor.  This of course means 
that both the tangential and normal component of ( )2 rE  are also 
equal to zero: 

( ) ( )2 2r 0 rt n= =E E  
 
And, since the tangential component of the electric field is 
continuous across the boundary, we find that at the interface: 
 

( ) ( )1 b 2 0t t br r= =E E  

( )1 rΕ

1ε

2   (i.e., perfect conductor)σ = ∞

ˆ na

( )2 r 0=Ε
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Think about what this means!  The tangential vector component 
in the dielectric (at the dielectric/conductor boundary)  is zero.  
Therefore, the electric field at the boundary only has a normal 
component: 
 

( ) ( )1 1b n br r=E E  
 

Therefore, we can say:  
 
 

The electric field on the surface of a perfect 
conductor is orthogonal (i.e., normal) to the 
conductor. 
 

 
Q1: What about the electric flux density ( )1 rD ? 
 
A1: The relation ( ) ( )1 1 1r r=D Eε  is still of course 
valid, so that the electric flux density at the surface 
of the conductor must also be orthogonal to the 
conductor. 
 
 
Q2:  But, we learned that the normal component of 
the electric flux density  is continuous across an 
interface.  If ( )2 0n r =D , why isn’t ( )1 0n br =D ? 
 
A2:  Great question!  The answer comes from a more 
general form of the boundary condition. 
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Consider again the interface of two dissimilar dielectrics.  This 
time, however, there is some surface charge distribution 

( )s brρ  (i.e., free charge!) at the dielectric interface: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The boundary condition for this situation turns out to be: 
 

( ) ( ) ( )
( ) ( ) ( )

ˆ 1 2

1 2

n n b n b s b

n b n b s b

a r r r
D r D r r

ρ

ρ

⋅ − =⎡ ⎤⎣ ⎦
− =

D D
 

 
where ( ) ( )ˆn b n n bD r a r= ⋅D  is the scalar component of ( )n brD  (note 
the units of each side are C/m2 !). 
 
Note that if ( ) 0s brρ = , this boundary condition returns (both 
physically and mathematically) to the case studied earlier—the 
normal component of the electric flux density is continuous 
across the interface. 

( ) ( )1 1r , rΕ D

( ) ( )2 2r , rΕ D

1ε

2ε

( )s brρ

ˆ na
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This more general boundary condition is useful for the 
dielectric/conductor interface.  Since ( )2 r 0=D in the 
conductor, we find that: 
 

( ) ( ) ( )
( ) ( )
( ) ( )

ˆ

ˆ
1 2

1

1

n n b n b s b

n n b s b

n b s b

a r r r
a r r

D r r

ρ

ρ

ρ

⋅ − =⎡ ⎤⎣ ⎦
⋅ =

=

D D

D  

 
In other words, the normal component of the electric flux 
density at the conductor surface is equal to the charge density 
on the conductor surface. 
 
Note in a perfect conductor, there is plenty of free charge 
available to form this charge density !  Therefore, we find in 
general that 1 0nD ≠  at the surface of a conductor.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

( )1 brD

1ε

2   (i.e., perfect conductor)σ = ∞

ˆ na

( )2 r 0=D

( )s brρ
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Summarizing, the boundary conditions for the tangential 
components field components at a dielectric/conductor 
interface are: 
 
 

( )

( )

1

1

0

0

t b

t b

r

r

=

=

E

D
 

 
 

 
but for the normal field components: 
 
 
 

( ) ( )

( ) ( )

1

1
1

n b s b

s b
n b

D r r

rE r

ρ

ρ

=

=
ε

 

 
 
 

Again, these boundary conditions describe the fields at the 
conductor/dielectric interface.  They say nothing about the 
value of the fields at locations above this interface. 
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Example: Boundary 
Conditions 

 
Two slabs of dissimilar dielectric material share a common 
boundary, as shown below. 
 
It is known that the electric field in the lower dielectric region 
is: 

( )2 2 6x y
Vˆ ˆr a a m⎡ ⎤= + ⎣ ⎦E  

 
and it is known that the electric field in the top region is 
likewise some constant field: 
 

( )1 1 1x yx y
Vˆ ˆr E a E a m⎡ ⎤= + ⎣ ⎦E  

 
 

 

( )2 2 6x yˆ ˆr a a= +E  

1 06ε ε=

2 03ε ε=

y 

x 
( )1 1 1x yx yˆ ˆr E a E a= +E
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In each dielectric region, let’s determine (in terms of 0ε ): 
 

1) the electric field 
2) the electric flux density 
3) the bound volume charge density (i.e., the equivalent 

polarization charge density) within  the dielectric. 
4) the bound surface charge density (i.e., the equivalent 

polarization charge density) at the dielectric interface 
 
 
Since we already know the electric field in the region, let’s 
evaluate region 2 first. 
 
We can easily determine the electric flux density within the 
region: 
 

( ) ( )

( )
2 2 2

0

20 0

3 2 6

6 18

x y

x y

r r
ˆ ˆa a

Cˆ ˆa a m

ε

ε

ε ε

=

= +

⎡ ⎤= + ⎢ ⎥⎣ ⎦

D E

 

 
Likewise, the polarization vector within the region is: 
 

 
( ) ( )

( ) ( )
( ) ( )

2 0 2 2

0 2

0

20 0

1 2 6

3 1 2 6

4 12

e

x yr

x y

x y

r r
ˆ ˆa a

ˆ ˆa a

Cˆ ˆa a m

ε χ

ε ε

ε

ε ε

=

= − +

= − +

⎡ ⎤= + ⎢ ⎥⎣ ⎦

P E
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Q:  Why did we determine the polarization vector?  It is not 
one of the quantities this problem asked for! 
 
A:  True!  But the problem did ask for the equivalent bound 
charge densities (both volume and surface) within the 
dielectric.  We need to know polarization vector ( )rP  to find 
this bound charge! 
 
Recall the bound volume charge density is: 
  

( ) ( )r rvpρ = −∇ ⋅P  
 

and the bound surface charge density is: 
 

( ) ( )r r ˆsp naρ = ⋅P  
 

Since the polarization vector ( )rP  is a constant (i.e., it has 
precisely the same magnitude and direction at every point with 
region 2), we find that the divergence of ( )rP  is zero, and thus 
the volume bound charge density is zero within the region: 
 

( ) ( )

( )
2 2

0 0

3

r r

4 12

0

vp

x ya a

C
m

ρ

ε ε

= −∇ ⋅

= − ∇ ⋅ +

⎡ ⎤= ⎢ ⎥⎣ ⎦

P

ˆ ˆ  

 
However, we find that the surface bound charge density is not 
zero!   
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Note that the unit vector normal to the surface of the bottom 
dielectric slab is 2ˆ ŷna a= : 
 
 

 
 
 

 
 
Since the polarization vector is constant, we know that its value 
at the dielectric interface is likewise equal to 0 04 12x ya aε ε+ˆ ˆ .  
Thus, the equivalent polarization (i.e., bound) surface charge 
density on the top of region 2 (at the dielectric interface) is  
 

( ) ( )

( )
ˆ

ˆ ˆ ˆ
2 2 2

0 0

20

4 12

12

sp b b n

x y y

r r a

a a a

C
m

ρ

ε ε

ε

= ⋅

= + ⋅

⎡ ⎤= ⎢ ⎥⎣ ⎦

P

 

 
Now, let’s determine these same quantities for region 1 (i.e., 
the top dielectric slab). 
 

Q1:  How the heck can we do this? We  don’t know 
anything about the fields in region 1 ! 
 
A1:  True! We don’t know ( )1 rE  or ( )1 rD  or even ( )1 rP . 
However, we know the next best thing—we know ( )2 rE  and 

( )2 rD  and even ( )2 rP ! 

2ˆ ŷna a=  
y 

x 
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Q2: Huh!?! 
 
A2: We can use boundary conditions to transfer our 
solutions from region 2 into region 1! 
 

First, we note that at the dielectric interface, the vector 
components of the electric fields tangential to the interface 
are ( )1 1 ˆt x xbr E a=E  and ( )2 ˆ2t xbr a=E : 
 

 
 
 
 
 
 

 
Thus, applying the boundary condition ( ) ( )1 2t b t br r=E E , we find: 
 

( ) ( )
ˆ ˆ

ˆ ˆ ˆ ˆ

1 2

1

1

1

2
2
2

t b t b

x x x

x x x x x

x

r r
E a a

E a a a a
E

=

=

⋅ = ⋅

=

E E

 

 
 
Likewise, we note that at the dielectric interface, the vector 
components of the electric fields normal to the interface are 

( )1 1 ˆn y ybr E a=E  and ( )2 ˆ6n ybr a=E : 
 
 
   

y 

x 

( )1 1 ˆt x xbr E a=E  

( )2 ˆ2t xbr a=E
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Here, we can apply a second boundary condition, 

( ) ( )1 1 2 2n b n br r=E Eε ε : 
( ) ( )

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

1 1 2 2

0 1 0

1

1

1

6 3 6
3
3
3

n b n b

y y y

y y y

y y y y y

y

r r
E a a
E a a

E a a a a
E

=

=

=

⋅ = ⋅

=

E Eε ε

ε ε

 

 
Thus, we have concluded using boundary conditions that Ex1 = 2 
and Ey1 = 3, or the electric field in the top region is: 
 

( )1 2 3x y
Vˆ ˆr a a m⎡ ⎤= + ⎣ ⎦E  

 
Likewise, we can find the electric flux density by multiplying by 
the permittivity of region 1 ( 1 06ε ε= ): 
 

( ) ( )1 1 1

20 012 18x y

r r
Cˆ ˆa a m

ε

ε ε

=

⎡ ⎤= + ⎢ ⎥⎣ ⎦

D E
 

 

y 

x 

( )1 1 ˆn y ybr E a=E  

( )2 ˆ6n ybr a=E
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Note we could have solved this problem another way! 
 
Instead of applying boundary conditions to ( )2 rE , we could have 
applied them to electric flux density ( )2 rD : 
 

( ) 22 0 06 18x y
Cˆ ˆr a a mε ε ⎡ ⎤= + ⎢ ⎥⎣ ⎦

D  

 
We know that the electric flux density within region 1 must be 
constant, i.e.: 

( ) 21 1 1x yx y
Cˆ ˆr D a D a m
⎡ ⎤= + ⎢ ⎥⎣ ⎦

D  

 
and that the vector fields  ( )1 rD  and ( )2 rD  at the interface 
are related by the boundary conditions: 
 

( ) ( )1 2

1 2

t b t br r
=

D D
ε ε

 

and 
 

( ) ( )1 2n b n br r=D D  
 
It is evident that for this problem: 
 

( )1 1t x xb ˆr D a=D  
 

( )1 1n y yb ˆr D a=D  
 

and for region 2: 
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( )2 012t xb ˆr aε=D  
 

( )2 018n yb ˆr aε=D  
 

Combining the results, we find the two boundary conditions are: 
 

( ) ( )

ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ

1 2

1 2

1 0

0 0

1 0

1 0

1 0

6
6 3

12
12
12

t b t b

x x x

x x x

x x x x x

x

r r

D a a

D a a
D a a a a

D

=

=

=

⋅ = ⋅
=

D D
ε ε

ε
ε ε

ε

ε
ε

 

 
and: 
 

( ) ( )
ˆ ˆ

ˆ ˆ ˆ ˆ

1 2

1 0

1 0

1 0

18
18
18

n b n b

y y y

y y y y y

y

r r
D a a

D a a a a
D

ε

ε

ε

=

=

⋅ = ⋅

=

D D

 

 
Therefore, we find that the electric flux density is: 
 

( ) 21 0 012 18x y
Cˆ ˆr a a mε ε ⎡ ⎤= + ⎢ ⎥⎣ ⎦

D  

 
Precisely the same result as before!   
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Likewise, we can find the electric field in region 1 by dividing by 
the dielectric permittivity: 
 

( ) ( )1
1

1

0 0

0

r

12 18
6

2 3

x y

x y

r

ˆ ˆa a

Vˆ ˆa a m

ε

ε ε
ε

=

+
=

⎡ ⎤= + ⎣ ⎦

DE

 

 
Again, the same result as before! 
 
Now, finishing this problem, we need to find the polarization 
vector ( )1 rP : 

( ) ( ) ( )

( ) ( )
1 0 1 1

0

20 0

r 1 r

ˆ ˆ6 1 2 3

ˆ ˆ10 15

r

x y

x y

a a

Ca a m

ε ε

ε

ε ε

= −

= − +

⎡ ⎤= + ⎢ ⎥⎣ ⎦

P E

 

 
Thus, the volume charge density of bound charge is again zero: 
 

( ) ( )

( )
1 1

0 0

r r

10 15
0

vp

x ya a

ρ

ε ε

= −∇ ⋅

= −∇ ⋅ +

=

P

ˆ ˆ  

 
 
However, we again find that the surface bound charge density is 
not zero!   
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Note that the unit vector normal to the bottom surface of the 
top dielectric slab points downward, i.e., 1ˆ ŷna a= − : 
 
 

 
 
 

 
 
Since the polarization vector is constant, we know that its value 
at the dielectric interface is likewise equal to 0 010 15x ya aε ε+ˆ ˆ . 
 
Thus, the equivalent polarization (i.e., bound) surface charge 
density on the bottom of region 1 (at the dielectric interface) 
is:  

( ) ( )

( ) ( )
ˆ

ˆ ˆ ˆ
1 1 1

0 0

20

10 15

15

sp b b n

x y y

r r a

a a a

C
m

ρ

ε ε

ε

= ⋅

= + ⋅ −

⎡ ⎤= − ⎢ ⎥⎣ ⎦

P

 

 
Now, we can determine the net surface charge density of bound 
charge that is lying on the dielectric interface: 
 

( ) ( ) ( )1 2

0 0

20

15 12

3

sp b sp b sp br r r

C
m

ρ ρ ρ

ε ε

ε

= +

= − +

⎡ ⎤= − ⎢ ⎥⎣ ⎦

 

 
 
  

1ˆ ŷna a= −

y 

x 


