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9-3 Inductance 
 

Reading Assignment:  pp. 290-286 
 
*  A transformer is an example of mutual inductance, 
where a time-varying current in one circuit (i.e., the 
primary) induces an emf voltage in another circuit (i.e., 
the secondary). 
 
*  We likewise can have self inductance, were a time-
varying current in a circuit induces an emf voltage 
within that same circuit! 
 
In fact, we can create circuit structures where this 
induced emf will be very large—we call these circuit 
elements inductors! 
 
Q: So how do we make an inductor? 
 
A:  Typically, an inductor is a solenoid! 
 
HO: Inductance 
 
Example: The Inductance of a Solenoid 
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Example: The Inductance of a Coaxial Transmission 
Line 
 
Just like a capacitor, an inductor can store energy! 
 
HO: Energy and Magnetic Fields 
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Inductance 
 
 
Consider a solenoid with N turns: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The current i(t) in flowing in the wire will produce a time-
varying magnetic flux density within the solenoid. This time-
varying magnetic flux density will induce a voltage ( )v t  across 
the solenoid.   
 
This voltage can be determined using Faraday’s Law: 
 

( ) ( )
1 1C S

r d r ds
t
∂

− ⋅ = ⋅
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( )v t

+

−

 

( )i t  
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Just like we determined for the ideal transformer, we find 
that: 
 

( ) ( )
1C

r d v t− ⋅ =∫ E  

 
and that: 
 

( ) ( )

( )
1 0S S

r ds N r ds
t t

tN
t

∂ ∂
⋅ = ⋅

∂ ∂

∂Φ
=

∂

∫∫ ∫∫B B
 

 
where S0 is the surface area of one loop. 
 
Therefore,  just as we determined for a transformer, Faraday’s 
Law says that: 

( ) ( )tv t N
t

∂Φ
=

∂
 

 
Now, let’s define the product  ( )N tΦ  as: 
 

( ) ( ) [ ]flux linkages    WebersN t tΦ Λ =  
 

 

 

 

Q:??? 
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A:  A magnetic flux of ( )tΦ  Webers passes through each and 
every one of the N loops of the solenoid.  We say therefore 
that each loop surrounds, or “links” ( )tΦ  Webers of flux.  If 
there are N loops, then the solenoid links a total of ( )N tΦ   
Webers of flux.  We call therefore  ( )N tΦ  the total flux 
linkages surrounded by the solenoid. 

 
Thus we can state our induced solenoid voltage as the time 
derivative of the flux linked by the solenoid: 
 

( ) ( )tv t
t

∂Λ
=

∂
 

 
Now, recall that current i(t) produced the magnetic flux density 
and thus the magnetic flux.  As a result, we find that the 
current i(t) is directly proportional to the total flux linkages of 
the solenoid: 
 

( ) ( )i t t∝ Λ  
 

Lets define the proportionality constant as L, so that we can 
say: 

( ) ( )t L i tΛ =  
 

Since i(t)  has units of amps and ( )tΛ  the units of Webers, the 
constant L must have units of Webers/Amp. 
 
Taking the time derivative we thus find: 
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( ) ( )t i tL
t t

∂ Λ ∂
=

∂ ∂
 

 
Note we can now write the induced voltage as: 
 
 

( ) ( )i tv t L
t

∂
=

∂
 

 
Q:  Look familiar? 
 
A:   Of course,  L is inductance ! 

 
Inductance is therefore defined as the ratio of current i to the 
total flux linkages it creates! 
 
 

Webersinductance   
Amp

L
i

⎡ ⎤Λ
= ⎢ ⎥

⎣ ⎦
 

 
 
Inductance is obviously dependent on the structure of the 
device (e.g., number of loops, diameter, length). 
 
By the way, we have another name for Webers/Amp—Henries! 
 
 

WebersHenries 
Ampere
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Example: The Inductance 
of a Solenoid 

 
Many inductors used in electronic circuits are simply solenoids.  
Let’s determine the inductance of this structure! 
 
First, we recall that inductance is the ratio of the current and 
the flux linkages that the current produces: 
 

Webersinductance   
Amp

L
i

⎡ ⎤Λ
= ⎢ ⎥

⎣ ⎦
 

 
The question then is, what is flux linkages Λ  for a solenoid? 
 
 
Recall that the magnetic 
flux density in the interior 
of a solenoid is: 
 

( ) z
N i ˆr a
d

µ
≈B  

 
where N is the number of 
loops and d is the length of 
the solenoid.   

( )i t  µ  

d 

z 
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The total magnetic flux flowing through the solenoid is 
therefore found by integrating across the cross-section of the 
solenoid: 

( )
S

r ds

N i S
d

µ

Φ = ⋅

=

∫∫B
 

 
where S is the cross-sectional area of the solenoid (e.g., 

2S aπ= if solenoid is circular with radius a). 
 
Recall the total flux linkage is just the product of the magnetic 
flux and the number of loops: 
 

2

N
N S i
d

µ

Λ = Φ

=
 

 
Thus, we now find that the inductance of a solenoid is: 
 
 
 

2N SL
i d

µΛ
= =  



12/3/2004 Example The Inductance of a Solenoid 3/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Note if we wish to increase the inductance of this solenoid, we 
can either: 
 

1)  Increase the permeability µ  of the core material. 
 
2)  Increase the number of turns N. 
 
3)  Increase the cross-sectional area S 
 
4)  Decrease the length d (while keeping N constant).  
 
 

Note all of the derivations in this handout are derived from the 
solution to an infinite solenoid.  As a result, they are 
approximations, but are typically accurate ones provided that: 
 

d S>>  
 

In other words, provided that the inductor length is 
significantly greater than its radius. 
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The Inductance of a 
Coaxial Transmission Line 

 
Recall that we earlier determined the capacitance (per unit 
length) of a coaxial transmission line to be: 
 

2  farads        
ln b/a meter

C π ⎡ ⎤= ⎢ ⎥⎡ ⎤ ⎣ ⎦⎣ ⎦

ε
 

 
We can likewise determine its inductance per unit length. 
 

Q:  Yikes! How do we accomplish this?  There are no loops 
in a coaxial line! 
 
A: True.  We instead begin by determining the energy 
stored (per unit length) of a coax line. 
 

Recall that the magnetic flux density between the inner and 
outer conductors of a coaxial line is: 
 

( ) ( )    a b
2

I ˆr aφ
µ ρ
πρ

= < <B  

 
Therefore the magnetic field within the line is: 
 

( ) ( )    a b
2
I ˆr aφ ρ
πρ

= < <H  
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The energy stored in a length  of the coax line is therefore: 
 

22

2 2
0 0

2

1
2

1
8

ln
4

m

b

a

W dv

I ˆ ˆa a d d dz

I b
a

π

φ φ
µ ρ ρ φ
π ρ

µ
π

= ⋅

= ⋅

⎡ ⎤= ⎢ ⎥⎣ ⎦

∫∫∫

∫ ∫ ∫

B H

 

 
Q:  So what? We want to find the inductance of the line, not 
the energy stored in it! 
 
A:  True. But recall inductance is related to stored energy as: 
 

21
2mW LI=  

Or in other words: 
 

2
2 mWL
I

=  

 
Using this expression, we find: 
 

2

2
2 ln

4

ln
2

I bL
I a

b
a

µ
π

µ
π

⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎡ ⎤= ⎢ ⎥⎣ ⎦
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Or, in other words, the inductance per unit length of a coax 
transmission line is: 
 
 
 

Henriesln          
2 m

L b
a

µ
π

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 
 
 

Note here that we did not consider the magnetic fields within 
the conductors.  For most engineering applications (i.e., time-
varying), we will find that the contribution of these fields are 
small and thus can be neglected. 



12/3/2004 Energy and Magnetic Fields 1/2 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Energy and Magnetic Fields 
 
 
Recall that the energy stored in an electrostatic system is: 
 

( ) ( )1
2e v

V
W r V r dvρ= ∫∫∫  

 
or equivalently: 
 

( ) ( )1
2e

V
W r r dv= ⋅∫∫∫D E  

 
This led to the expression relating energy and capacitance: 
 

21
2eW C V=  

 
We can similarly ask the question, how much energy is stored in 
a magnetostatic system?   
 
Precisely the amount of work required to establish the current 
density ( )rJ ! 
 
We find that the expressions for this work/energy are 
analogous to that of electrostatics.  For example, we find that: 
 



12/3/2004 Energy and Magnetic Fields 2/2 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 

( ) ( )1
2m

V
W r r dv= ⋅∫∫∫J A  

 
 
Therefore, we again find that energy stored is equal to the  
integration of the “product” of the sources (e.g.,  or vρ J ) and 
the potential function (e.g.,  or V A). 
 
Likewise, this energy can be expressed in terms of the two 
magnetic fields: 
 
 

( ) ( )1
2m

V
W r r dv= ⋅∫∫∫B H  

 
 
 

Therefore, we again find that energy stored is equal to the  
integration of the dot product of the flux density (e.g.,  or D B ) 
and the other field (e.g.,  or E H). 
 
We likewise find that this energy can be directly expressed for 
the energy stored by an inductor: 
 
 

21
2mW LI=  

 
Look familiar ? 


