2.3 Vector Algebra

Reading Assignment: pp. 11-16

You understand scalar math, but what about vector mathematics?

Consider, for example:
A.
B.
C.
D.
A. Arithmetic Operations of Vectors

Q:

A: HO: Arithmetic Operations of Vectors
B. Arithmetic Operations of Vectors and Scalars

Say b is a scalar and \bar{A} is a vector.

Q: What then is $\bar{A}+b$ or $b-\bar{A}$??

A:
C. Multiplicative Operations of Vectors and Scalars

Q: So, does the multiplication of scalar b and vector \bar{A} (i.e., $b \bar{A}$ or $\bar{A} b$) have any meaning?

A:

HO: Multiplicative Operations of Vectors and Scalars

We can now examine a super-important concept:

HO: The Unit Vector

D. Multiplicative Operations of Vectors

Q: Can we multiply two vectors?

A:

HO: The Dot Product

HO: The Cross Product

HO: The Triple Product

E. Vectors Algebra

Now that we know the rules of vector operations, we can analyze, manipulate, and simplify vector operations!

HO: Example: Vector Algebra

HO: Scalar, Vector, or Neither?

F. Orthogonal and Orthonormal Vector Sets

We can now use vector algebra to write equations that specify some relationship between sets of vectors.

HO: Orthogonal and Orthonormal Vector Sets

