1/3

2.3 Vector Algebra

Reading Assignment: pp. 11-16

You understand scalar math, but what about vector mathematics?

Consider, for example:

A.

B.

C.

D.

Q:

A: HO: Arithmetic Operations of Vectors

B. Arithmetic Operations of Vectors and Scalars

Say b is a scalar and \overline{A} is a vector.

Q: What then is $\overline{A} + b$ or $b - \overline{A}$?

A:

C. Multiplicative Operations of Vectors and Scalars

Q: So, does the **multiplication** of scalar *b* and vector \overline{A} (i.e., $b\overline{A}$ or $\overline{A}b$) have any meaning?

A:

<u>HO: Multiplicative Operations of Vectors and</u> <u>Scalars</u>

We can now examine a super-important concept:

HO: The Unit Vector

- D. Multiplicative Operations of Vectors
- Q: Can we multiply two vectors?

A:

HO: The Dot Product

HO: The Cross Product

HO: The Triple Product

E. Vectors Algebra

Now that we know the rules of vector operations, we can analyze, manipulate, and simplify vector operations!

HO: Example: Vector Algebra

HO: Scalar, Vector, or Neither?

F. Orthogonal and Orthonormal Vector Sets

We can now use vector algebra to write equations that **specify** some relationship between sets of vectors.

HO: Orthogonal and Orthonormal Vector Sets