2.4 Orthogonal Coordinate Systems

Reading Assignment: pp.16-33
We live in a 3-dimensional world!
Meaning:

1)

2)

Q: What 3 scalar values and what 3 unit vectors do we
use ??

A: We have several options! A set of 3 scalar values
that define position and a set of unit vectors that
define direction form a Coordinate system. Examples
of coordinate systems include:

1.



A. Coordinates

* The 3 scalar values used to define position are called
coordinates.

* E.G., scalar values u;, uz, and u3 can define precisely
the location of point P in space (i.e., P(u;, uz, u3)).

* All coordinates are defined with respect to an
arbitrary point called the origin.

HO: Cartesian Coordinates

HO: Cylindrical Coordinates

HO: Spherical Coordinates

B. Coordinate Transformations

We can rewrite the location of point P(x,y,2) in terms
of cylindrical coordinates (i.e, P(r,6,¢)), for example.



Or, we can rewrite a scalar field g(x,y,z)in terms of
cylindrical coordinates (i.e, g(p,4.z)), for example.

HO: Coordinate Transformations

Example: Coordinate Transformations

C. Base Vectors

* The 3 unit vectors used to define direction are called
base vectors.

* E.G., base vectors a,a,, a, can be used to precisely
describe the direction of some vector A.

HO: Base Vectors

HO: Cartesian Base Vectors




D. Vector Expansion using Base Vectors

Q: Why are base vectors important? How are they
used?

A: We find that any and all vectors can be expressed
as the sum of 3 vectors, each pointing in the precise
direction of one of the three base vectors!

e.q.,
B=84g+8a+8a

or

HO: Vector Expansion using Base Vectors

E. Spherical and Cylindrical Base Vectors

HO: Spherical Base Vectors

HO: Cylindrical Base Vectors




F. Vector Algebra and Vector Expansions

HO: Vector Algebra using Orthonormal Base Vectors

6. The Vector Field

* Recall a vector field is a function of position.

* We express position in terms of coordinates.

* Thus, a vector field is function of coordinate values
(eg., x y, 2).

* But, we express a vector field with 3 scalar
components.

HO: Vector Fields




HO: Expressing Vector Fields with Coordinate
Systems

H. The Position Vector

In addition to coordinates (e.qg., r,0,¢4), we can use a
special directed distance to specify points in space.

HO: The Position Vector

HO: Applications of the Position Vector

HO: Vector Field Notation

HO: A Gallery of Vector Fields




Cartesian Coordinates

You're probably familiar with Cartesian coordinates. In two-
dimensions, we can specify a point on a plane using two scalar
values, generally called xand y.

y-axis

< X > P(x.y)

y

origin %'

X -axis

We can extend this to three-dimensions, by adding a third

scalar value z

origin

Z - axis

P(x.y.2)

y - axis




Note the coordinate values in the Cartesian system effectively
represent the distance from a plane intersecting the origin.

For example, x =3 means that the point is 3 units from the y-z
plane (i.e., the x =0 plane).

Likewise, the y coordinate provides the distance from the x-z
(y=0) plane, and the z coordinate provides the distance from the
x-y (z=0) plane.

Once all three distances are specified, the position of a point is
uniquely identified.

E/
3
4
g P(2,3,2.5)
P(0,0,0) X
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Cylindrical Coordinates

You're probably also familiar with polar coordinates. In two-
dimensions, we can also specify a point with two scalar values,
generally called p and ¢.

We can extend this to three-dimensions, by adding a third
scalar value z This method for identifying the position of a
point is referred to as cylindrical coordinates.

y4

. P(p,¢,2)




Note the physical significance of each parameter of cylindrical
coordinates:

1. The value p indicates the distance of the point from the z-
axis (0 < p < o).

2. The value ¢ indicates the rotation angle around the z-axis
(O<¢p<2r), precisely the same as the angle ¢ used in
spherical coordinates.

3. The value z indicates the distance of the point from the
x-y (z = 0) plane (-0 <z <o), precisely the same as the

coordinate ~ used in Cartesian coordinates

Once all three values are specified, the position of a point is
uniquely identified.

Z
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Spherical Coordinates

* Geographers specify a location on
the Earth's surface using three scalar
values:  longitude, latitude, and
altitude.

* Both longitude and latitude are
angular measures, while altitude is a
measure of distance.

* Latitude, longitude, and altitude are
similar to spherical coordinates.

* Spherical coordinates consist of one scalar value (r), with
units of distance, while the other two scalar values (0,4) have

angular units (degrees or radians).

y4

P(r,0,¢)




1. For spherical coordinates, r (O<r <x) expresses the
distance of the point from the origin (i.e., similar to altitude).

2. Angle 6 (0 <0 < x)represents the angle formed with the
Z-axis (i.e., similar to latitude).

3. Angle ¢ (0<¢<2x) represents the rotation angle around
the z-axis, precisely the same as the cylindrical coordinate ¢
(i.e., similar to longitude).

45 P(3.0,45,60)

0=
1\

P(0,6.¢) r :30 Z

Thus, using spherical coordinates, a point in space can be
unambiguously defined by one distance and two angles.



Coordinate

Transformations

Say we know the location of a point, or the description of some
scalar field in ferms of Cartesian coordinates (e.g., T(x,y,2)).

What if we decide to express this point or this scalar field in
terms of cylindrical or spherical coordinates instead?

Q: How do we accomplish this coordinate
transformation?

A: Easy! We simply apply our knowledge of
trigonometry.

We see that the coordinate values z, p, r, and @ are all
variables of a right triangle! We can use our knowledge of
trigonometry to relate them to each other.

In fact, we can completely derive the relationship between all
six independent coordinate values by considering just two very
important right triangles! -> Hint: Memorize these 2
triangles/l!



A Z
Very Important
Right Triangle #1

It is evident from the triangle that, for example:

Z=rcosf=pcotld=r’-p
p=rsind=ztand =~r° - z*

r=\p*+z°*=pcschd=_zsectd
0 =tan [%} =sin* [%} =cos™’ [%}



Likewise, the coordinate values x, y, p, and ¢ are also related
by a right triangle!

A<

Very Important
Right Triangle #2

From the resulting triangle, it is evident that:

X =pcosp=ycotg=4p°—y°
y =p sing = x tang = /p° — x*
p=+\x*+y? =xsecp=ycsce

AR A



Combining the results of the two triangles allows us to write
each coordinate set in terms of each other:

Cartesian and Cylindrical

2 2
=JX° +
X = pCcos ¢ p Y

y=psing ¢ =tan™ [é} (be careful 1)

Z=2
Z=2

Cartesian and Spherical

r=x*+y+ 2

X = sinf cos¢ -
y = r sind sing 0 = cos™ | ——= 22 2}
Z = cosé _\/X Tyote

¢ = tan™ Z}




Cylindrical and Spherical

r=\p°+2z°

p =r sing

b= ¢ 0 = tan™ [ﬁ}
y4

Z = cosd

¢ =9




Example: Coordinate
Transformations

Say we have denoted a point in space (using Cartesian
Coordinates) as P(x=-3, y=-3, z=2).

Let's instead define this same point using cylindrical
coordinates p, ¢, z:

p=\x*+y? = (-3 +(-3) =32

¢=tan™ [%} =tan™ t—ﬂ =tan'[1]=45

z=2

Therefore, the location of this point can perhaps be defined
also as P(p =32, =45, z=2).

G Wait! Something has gone
horribly wrong. Coordinate
¢ =45° indicates that point P is
located in quadrant I, whereas
the coordinates x =-3, y =-3 tell
us it is in fact in quadrant IIT/

N




A: The problem is our interpretation of the inverse tangent!

Remember that 0 <¢ <360°, so that we must do a four quadrant
inverse tangent. Your calculator likely only does a two quadrant
inverse tangent (i.e., 90 < ¢ <-90°), so be careful!

Therefore, if we correctly find the coordinate ¢:

¢=tan™ {1} = tan™ {_—ﬂ =225

X

Y

IT I

¢=225O /// ¢:45

/// X

I IV
y
P

The location of point P can be expressed as either P (x=-3, y=-3,
z=2)or P(p=32, $=225", z=2).



We can also perform a coordinate transformation on a scalar
field. For example, consider the scalar field (i.e., scalar
function):

9(p.¢,2)=p’singz

Lets try to rewrite this function in terms of Cartesian
coordinates. We first note that since p=./x°+y?,

3— 3/2

pl=(x*+y*)

Now, what about sing? We know that ¢=tan[y/x], thus we
might be tempted to write:

oo

Although technically correct, this is one ugly expression. We
can instead turn to one of the very important right triangles
that we discussed earlier:

y p

From this triangle, it is
y apparent that:

S sing =




As a result, the scalar field can be written in Cartesian
coordinates as:

g(x.y.z) (X

Remember, although the scalar fields:

_q(x,y,z)=(x2 +y2)yz
and:
9(p.¢,2)=p’singz

look very different, they are in fact exactly the same
functions—only expressed using different coordinate variables.

For example, if you evaluate each of the scalar fields at the
point described earlier in the handout, you will get exactly the
same result!




Base Vectors
qyou said earlier that vector \

quantities (either discrete or field)
have both and magnitude and
direction. But how do we specify
direction in 3-D space? Do we use
coordinate values (e.g., x, y, z )??/

A: Tt is very important that you understand that coordinates
only allow us to specify position in 3-D space. They cannot be
used to specify direction!

The most convenient way for us to specify the direction of a
vector quantity is by using a well-defined orthornormal set of

vectors known as base vectors.

Recall that an orthonormal set of vectors, say 4, a,, a;, have
the following properties:

1. Each vector is a unit vector:
"7\151 :aAz 'éz 253‘53 =1
2. Each vector is mutually orthogonal:

51'52:"7\2'53:53'51:0



Additionally, a set of base vectors g, a,, @ must be arranged
such that:

A

A A o) A A ) o) o) o)
a3 01X02=a3, GZXG3=GI, G3><01=az

A

a,

>
a

An orthonormal set with this property is known as a right-
handed system.

All base vectors 4, 4,, a, must form a right-handed,
orthonormal seft.

Recall that we use unit vectors to define direction. Thus, a
set of base vectors defines three distinct directions in our 3-

D space!

6 But, what three \

directions do we use?? I
remember that you said
there are an infinite number
of possible orientations of ar
(fhanorma/ setll




A: We will define several systematic, mathematically precise
methods for defining the orientation of base vectors.
Generally speaking, we will find that the orientation of these
base vectors will not be fixed, but will in fact vary with
position in space (i.e., as a function of coordinate values)

Essentially, we will define at each and every point in space a
different set of basis vectors, which can be used to uniquely
define the direction of any vector quantity at that point!

G Good golly! Defining a
different set of base vectors for
every point in space just seems
dad-gum confusing. Why can’t
we just fix a set of base vectors
Such that their orientation is the

@e at all points in space? /

A: We will in fact study one method for defining base
vectors that does in fact result in an othonormal set whose
orientation is fixed—the same at all points in space (Cartesian
base vectors).

However, we will study two other methods where the
orientation of base vectors is different at all points in space
(spherical and cylindrical base vectors). We use these two
methods to define base vectors because for many physical
problems, it is actually easier and wiser to do so!



Think about, however, how
these base vectors are
oriented! Since we live on
the surface of a sphere (i.e.,
the Earth), it makes sense
for us to orient the base
vectors with respect to the
spherical surface.

What this means, of course,
is that each location on the
Earth will orient its "base
vectors” differently. This
orientation is thus different
for every point on Earth—a
method that makes perfect
sensel

For example, consider how
we define direction on
Earth: North/South,
Fast/West, /Down.

Each of these directions
can be represented by a
unit vector, and the three
unit vectors together form
a set of base vectors.




Cartesian Base Vectors

As the name implies, the Cartesian base vectors are related to
the Cartesian coordinates.

Specifically, the unit vector a4, points in the direction of

increasing x. In other words, it points away from the y-z (x=0)
plane.

Similarly, a,and a, point in the direction of increasing y and z,

respectfully.

N\
z

NQ)

>

><Q>

We said that the directions of base vectors generally vary with
location in space—Cartesian base vectors are the exception!
Their directions are the same regardless of where you are in
space.



Vector Expansion using

Base Vectors

Having defined an orthonormal set of base vectors, we can
express any vector in terms of these unit vectors:

A=A a +A4 a4, +A4aq,

Note therefore that any vector can be written as a sum of
three vectors!

* Each of these three vectors point in one of the three

~

orthogonal directions a,, a,, a,.

* The magnitude of each of these three vectors are
determined by the scalar values A,, A, and A,.

* The values A,, A, and A, are called the scalar
components of vector A.

* The vectors A, a,, A a,, A a, are called the vector

components of A.



Q: What the heck are scalar the components A, A,,
and A,, and how do we determine them 2?

A: Use the dot product to evaluate the expression
above !

Begin by taking the dot product of the above expression with
unit vector a,:

A-ad +Ad, )

a, +
Aa,-a, +A

z

Ay

.ﬁx

>
NQ> x

A a
But, since the unit vectors are orthogonal, we know that:

a-a =1 a-a=0 a

X X z

4.-0

Thus, the expression above becomes:

~

A =A-a,
In other words, the scalar component A, is just the value of the
dot product of vector A and base vector a,. Similarly, we find

that:
A=A-a and A =A-q,

Y Yy



Thus, any vector can be expressed specifically as:

A

A a, A=A G +AG4

‘Q>

Note the length (i.e., magnitude) of vector A can be related to
the length of vector 4, a, using trigonometry:

A, =|A|cosd,,




Likewise, we find that the scalar component A, is related to |A|
as:

=|A|cosb,,

From this geometric interpretation, we can see why we often
refer to the scalar component A, as the scalar projection of
vector A onto vector (direction) a,.

Likewise, we often refer to the vector component A a. as the
vector projection of vector A onto vector (direction) a,.

€3

(7

As you may have already noticed, fhe\
scalar component A., which we

V. determined geometrically, can likewise
H be expressed in terms of a dot product/

u A, =|A|cosd,,

n

= |A|‘ é}‘ cosb,,

_/




Accordingly, we find that the scalar component of vector A are
determined by “doTing" vector A with each of the three base

vectors a ay , az

A =A-a,
A =A-aq,
A=A A_,

Said another way, we project vector A onto the directions

a,.a,,a,. Either way, the result is the same as determined

earlier: every vector A can be expressed as a sum of three
orthogonal components:

For example, consider a vector A, along with two different sets
of orthonormal base vectors:

A a



The scalar components of vector A, in the direction of each
base vector are:

A =AG =20 A=A-G =00
A =A-G =15 A=A-G =25
A =AG, =00 A=A-4=00

Using the first set of base vectors, we can write the vector A
as: A

A=A a +Aa +Aa,
=2.04,+154, 154,
20a,
Or, using the second set, we find that: A
A=Aa 7 7 -
401:"/1202"'403 2.5 aq,
=2.Da,

It is very important to realize that:

A=204,+154,-254,

In other words, both expressions represent exactly the same
vector! The difference in the representations is a result of
using different base vectors, not because vector A is somehow
"different” for each representation.



Spherical Base Vectors

Spherical base vectors are the "natural” base vectors of a
sphere.

a. points in the direction of increasing . In other
words &. points away from the origin. This is
analogous to the direction we call up.

a points in the direction of increasing 6. This is
analogous to the direction we call south.

a  points in the direction of increasing ¢. This is

analogous to the direction we call east.




IMPORTANT NOTE: The directions of spherical base vectors
are dependent on position. First you must determine where you

are in space (using coordinate values), then you can define the
directions of 4., g,, 4.

Note Cartesian base vectors are special, in that their

directions are independent of location—they have the same
directions throughout all space.

Thus, it is helpful to define spherical base vectors in terms of
Cartesian base vectors. It can be shown that:

7.-a,=sinfcos¢  Q,-a,=cosOcosy  a,-4,=-SiNP
a,-a,=sinosing a,-a, = cos0sing a,-a, =cos ¢
-4, =cos 0 a,-a,=-sino a,-a,=0

Therefore, we can write unit vector a. as, for example:

A A

a, =( : -aX)aX +(ar -ay)ay +(ar -az)az

=sinfcos ¢ 4, +sindsing a,+cos 6 a,

This result explicitly shows that 4. is a function of 6 and ¢.



For example, at the point in space r=7.239, 6 =90°and ¢ =0,
we find that @. = a,. Inother words, at this point in space, the
direction g. points in the x-direction.

Or, at the point in space r=2.735, 6 =90°and ¢ =90°, we find
that 4. = a,. Inother words, at this point in space, 4. points in
the y~direction.

Additionally, we can write g, and g, as:

Y
>

N ——
Qs

a,=(4,-a,)d, +(q,-d,)a,+(qq,

Alternatively, we can write Cartesian base vectors in terms of
spherical base vectors, i.e.,

é\z :(é\z é‘r')é‘/‘ +<aAz al\e)é;_l_(a’\ a’;)a’;

Using the table on the previous page, we can insert the result
of each dot product to express each base vector in terms of
spherical coordinates!



Cylindrical Base Vectors

Cylindrical base vectors are the natural base vectors of a
cylinder.

a, points in the direction of increasing p. In other
words, a, points away from the z-axis.

a, points in the direction of increasing ¢. This is

precisely the same base vector we described for
spherical base vectors.
a, points in the direction of increasing z. This is

precisely the same base vector we described for
Cartesian base vectors.

NQ>




It is evident, that like spherical base vectors, the
cylindrical base vectors are dependent on position. A
vector that points away from the z-axis (e.g., a,), will
point in a direction that is dependent on where we are in
space!

We can express cylindrical base vectors in terms of
Cartesian base vectors. First, we find that:

,d, =CoS¢ ,"d, =—SIng a,-a =0
,-a, =Sing , -4, =CoS¢ ,-a,=0
-a, =0 ,-a, =0 a,-a,=1

We can use these results to write cylindrical base
vectors in terms of Cartesian base vectors, or vice versal

For example,

a, =(ap -aX)aX +(ap -ay)ay +(a : z)az
=cos¢a, +singa,

or,

a,=(d,-a,)a,+(a,4,)a,+(4,-a,)q,

=cos¢a,-singa,



Finally, we can write cylindrical base vectors in terms of
spherical base vectors, or vice versa, using the following
relationships:

,-a, =sing a,-a.=0 a,-a.=coso
,+d, =C0S0 a,-a,=0 a,-a,=-sind
p. ¢=O a¢-a¢=1 az ¢:O

e.qg.,

~

a, =(ap -ar)ar +(ap -ag)ag +(ap- ¢)a¢

=sinda. +cosda,

a, :(ag -ap)ap +(a€ -a¢)a¢ +(a,-a,)a,

=cosfa,—sinda,



Vector Algebra using
Orthonormal Base Vectors

Q: Just why do we exp/"essa\
vector in terms of 3

orthonormal base vectors?
Doesn't this just make things
even more complicated 2? /

f - 2 AN
(Y =S8

A: Actudlly, it makes things much simpler. The
evaluation of vector operations such as addition,
subtraction, multiplication, dot product, and cross
product all become straightforward if all vectors are
expressed using the same set of base vectors.

Consider two vectors A and B, each expressed using the same
set of base vectors a,, a,, a

.




1. Addition and Subtraction

If we add these two vectors together, we find:

In other words, each component of the sum of two vectors is
equal to the sum of each component-.

Similarly, we find for subtraction:

2. Vector/Scalar Multiplication

Say we multiply a scalar aand a vector B, i.e., aB:



aB:a(BX a,+8 a, +8, az)
=aB, a,+aB, a, +ab, a,

=(aB,)a, +(aBy) a, +(aB,)a,

In other words, each component of the product of a scalar and
a vector are equal to the product of the scalar and each

component.
(Q: I thought )
3. Dot Product this was suppose
to make things
easier 7/

Say we take the dot product of A and B:

AB=(Ad,+A d,+Aad,) (8. d,+8 4,
=A d,-(B. d,+8d,+8 d,)
+A,4,-(B, 4, +8 d,+8 d,)
+A, d,-(B, 4, +8,d,+8, a,)
=A B.(d,-d,)+A B(4,-d,)+A B
+A, BX(aAy-aAX)+Ay By(aAy-aAy)+Ay B,
+A,B.(d,-d,)+A B,(d,-4,)+A B

A: Be patient! Recall that these are orthonormal base
vectors, therefore:

~ ~

a,-a =d,a,=a,-a,=1 and a,-



As a result, our dot product expression reduces to this simple
expression:

A-B=AB +AB +AB

We can apply this to the expression for determining the
magnitude of a vector:

A=A A=A+ A+ A
Therefore:

Al=VA A=A+ 4+ A

For example, consider a previous handout, where we expressed a
vector using two different sets of basis vectors:

A =20z, +1.5,
or,
A =2.5h

y

Therefore, the magnitude of A is determined to be:



A= V1.5 +2.02 =/6.25 = 2.5
or,

Al =V2.5% =/6.25 = 2.5

Q: Hey! We get the same answer from both
expressions, is this a coincidence ?

A: Nol Remember, both expressions represent
the same vector, only using different sets of base
vectors. The magnitude of vector A is 2.5,
regardless of how we choose to express A.

4. Cross Product

Now lets take the cross product AxB:

, tA a,|X(5,a,+5,4,15, a,
=A a, x(BX a,+8 a,+8, a})
+A, a, x(BX a,+B a,+8, c?z)
+A a, x(BX a,+B a,+8, c?z)
=AB.(dxd,)+AB(dxa)+AB(dxa,)
+AB, (dxa,)+AB (axd,)+AB(4,xd,)
+A,8,(4,x 4, )+AB, (ézx a})+ .8, (a,x a,)



Remember, we know that:
axa,=axa,=a,xa,=0

also, since base vectors form a right-handed system:

~ ~

a xd,=a, d,xXxa,=a, a

~ ~

Xa,=a,

X z

Remember also that AxB = -(BxA), therefore:

~

a,xa,=-a

z

~

axa =-a

X

axd,=-a,

Combining all the equations above, we get:

AXB=(AB, ~A,8,) Gy +(AB, -~ AB,) G, +(AB, —ABy,) G,

5. Triple Product

Combining the results of the dot product and the cross product,
we find that the triple product can be expressed as:

A-BxC =(ABC, +ABC, +ABC,)-(ABC, +ABC, +ABLC,)




IMPORTANT NOTES:

/Iﬂaddiﬁon to all that we
have discussed here, it is
critical that you understand
the following points about
vector algebra using

orthonormal base vectors/

* The results provided in this handout were given for Cartesian
base vectors ( a,,a,,a,). However, they are equally valid for

any right-handed set of base vectors q,,a,,a;, (eg., a,,a,,a, or

a.,a, a,).
* These results are algorithms for evaluating various vector
algebraic operations. They are not definitions of the

operations. The definitions of these operations were covered in
Section 2-3.

* The scalar components Ay, A,, and A, represent either
discrete scalar (e.g., A = 4.2) or scalar field quantities (e.g.,

A, =r°sinfcos¢.



Vector Fields

Base vectors give us a convenient way to express vector fields!

You will recall that a vector field is a vector quantity that is a
function of other scalar values. In this class, we will study
vector fields that are a function of position (e.g., A(x,y,z)).

We earlier considered an example of a vector field of this type:
the wind velocity v(x, y)across the upper Midwest.

iS5 PRSI U EnY,

o )

0 2 4 6 8§ 10 12 14 16 18 20 mis
0 5 10 15 20 25 30 35 40 45 mph
When we express a vector field using orthonormal base

vectors, the scalar component of each direction is a scalar
field—a scalar function of position!



In other words, a vector field can have the form:

Alx,y,z)=A(x,y.z)a, +A(x,y,z)a +A(x,y,z)a,

We therefore can express a vector field A(x,y,z) in terms of
3 scalar fields: A.(x,y,z),A(x,y,z), and A,(x,y,z), which

express each of the 3 scalar components as a function of
position (x,y,2).

For example, we might encounter this vector field:

Alx,y,z)=(x*+y%)a, +% 1,+(3-y)a,

In this case it is evident that:

A(x,y.2)=(x°+y?)
Xz
A)/(lelz) T y

Az(lelZ):(3_Y)

The vector algebraic rules that we discussed in previous
handouts are just as valid for vector fields and scalar field
components as they are for discrete vectors and discrete
scalar components.



For example, consider these two vector fields, expressed in
terms of orthonormal base vectors a,,a,,a;:

Alx,y,z)=y?a, +(x - 2)a, +§5z

B(x,y.z)=(x+2)4, +za, + xyz 4,

The dot product of these two vector fields is a scalar field:

Alx,y,z) B(x,y.z2)=A B, +A B + A8
= y2(x +2) + (xz — 2°) + xy*?

Likewise, the sum of these two vector fields is a vector field:

A(x,y.z)+B(x,y.z)=(A + B)a, + (A +B)a, + (A4 + B,)a,

| y(xz% +1)
z

=(y*+x+2)a, + x4, a,
Note the example vector fields we have shown here are a
function of spatial coordinates only. In other words, the vector
field is constant with respect to time—the discrete vector

quantity at any and every point in space never changes its
magnitude or direction.

However, we find that many (if not most) vector fields found in
nature do change with respect to both spatial position and time.



Thus, we often discover that vector fields must be written as
variables of three spatial coordinates, as well as a time variable
'l

For example:

Alx,y,z,t)=(x*+y*)ta, +%f2 a,+(3-y+4t)q,

* A vector field that changes with respect to time is known as
a dynamic vector field.

* A vector field that is constant with respect to time is known
as a static vector field.



Example: Expressing
Vector Fields with

Coordinate Systems

Consider the vector field:

I Iy X | A
A=xz aX+(X2+y2)ay+(;j a,

Let's try to accomplish three things:

1. Express A using spherical coordinates and Cartesian
base vectors.

2. Express A using Cartesian coordinates and spherical
base vectors.

3. Express A using cylindrical coordinates and cylindrical
base vectors.

1. The vector field is already expressed with Cartesian base
vectors, therefore we only need to change the Cartesian
coordinates in each scalar component into spherical
coordinates.



The scalar component of A in the x-direction is:

A =xz
= (r sin@ cos¢)(r coso)
= r°siné cos@ cos¢

The scalar component of A in the y~direction is:

A =x"+y
= (r sind cosg)’ +(r sing sing)’
= r°sin°é (coszqﬁ + Sin2¢)

= r’sin’
The scalar component of A in the z-direction is:

A =—
z
_rsing cos¢
r coso
= tané cosy

Therefore, the vector field can be expressed using spherical
coordinates as:

A =r’sing cosé cos¢ a, + r’sin’d a, + tandcosy a,



2. Now, let's express A using spherical base vectors. We
cannot simply change the coordinates of each component.
Rather, we must determine new scalar components, since we
are using a new set of base vectors. We begin by stating:

e S 2 )2 o
A-d =xzd.d,+(xX*+y?) +(Zj -a.
= xz(sinfcosg)+(x% + y?)( )+[§j(cos€)
JX°+y° X
= XZ
\/X2+y2+22 \/X2+y2
+(X2+y2)
Earmm
X
z) Ix?+y?+2°
x°z y (X +y?) X

:\/)(2+y2+z2 Jr\/,\’2+y2+z2 Jr\/XZerZJrz2

 Xz+xPy+yitx

\/XZ +y?+ 2

Likewise, the scalar component A, is:



~ ~| A X ) -
A-agzxzax-ag+(xz+y2) +(—jaz-ag

= xz(cosOcos)+(x* + y*)( )—(ij(sine)
g z X
JX 4y e 28 x4y

+(x2 +y2)

(2} 7

z) Ix?+y?+2°

Xz yz*'(x* +y%)

- z\/x2 +y° +zz\/x2 +y° K z\/x2 +y° +ZZ\/X2 +y?
X(X2+y2)
z\/)(2 +y?+ 27 \/XZ +y°

X+ xPyzt+ iz - x - xy?
z\/x2 +y*+2° \/xz +y°

And finally, the scalar component A, is:

~ ~

- 2, .2 X))~ -
A-d =xzd, a,+(x*+y?) +(;) -4,

= xz(-sing)+(x% + y*)( )+[§j0
A

ravtahid

—xyz+x° + xy’

=XZ




Whew! We're finished! The vector A is expressed using
Cartesian coordinates and spherical base vectors as:

A X°z+xly+y +x ;
JXE+yi e 2 ’

X2+ Xy +yiz—-xC - xy? | .
i 2 2 2 2 2 d
z X+ y 428 Xy

—XyZ + X° +xy2J .

2 2 a
XSty

3. Now, let's write A in terms of cylindrical coordinates and
cylindrical base vectors (i.e., in terms of the cylindrical
coordinate system).

A=(A-a,)a,+(A-4,)q,+(A -d,)a,

Yol
First, A, is:

A-a :ch?-Ap+(X2+y2) +(

yo P'S

N | X
N~
N)
bQ)

= xz(cosg)+(x° + y?)( )+(§](O)

= pcosgz(cosg)+ p°(sing)
= pcos’pz + p°sing



And A¢i31
- -1 % 2, 2 X))~ o~
A-G,=xza,4,+(x°+y?) +(;j .a,

:xz(—sin¢)+(X2 +y2)( )+(§j(0)

=—pcosgz(sing)+ p®(cosy)
= pcosg(p—zsing)

And finally, A;is:

We can therefore express the vector field A using both
cylindrical coordinates and cylindrical base vectors:

a,

A

pcos¢j

(PC052¢Z + pZSin¢) a; + pCOS¢(p —zsin¢) a; +( :



Thus, we have determined three possible ways (and there are
many other ways!) to express the vector field A:

1.
A =r’sing cosé cos¢ a, +r’sin’d a, + tandcosy a,

A X°z+xly+yi+x ;
JXE+yP e 2 ’

X2+ Xyl +yiz—-xP - xy? | .
T 2 2 2 2 2 %
z X+ y 128 Xty

—XyZ + X° +xy2J .

a,

A

(pcos’pz+ pPsing) a, + pcosg(p - zsing) g, +(/’°§5¢j

Please note:

*  The three expressions for vector field A provided in this
handout each look very different. However, they are just three
different methods for describing the same vector field. Any
one of the three is correct, and will result in the same result
for any physical problem.

*  We can express a vector field using any set of coordinate
variables and any set of base vectors.



*  Generally speaking, however, we use one coordinate system
to describe a vector field. For example, we use both spherical
coordinates and spherical base vectors.

_A\ Q: So, which coordinate \
’ system (Cartesian,
%\//é cylindrical, spherical) should
— we use ? How can we decide
between the three?

A: Ideally, we select that system that most simplifies the
mathematics. This depends on the physical problem we are
solving.

For example, if we are determining the fields resulting from a
spherically symmetric charge density, we will find that using
the spherical coordinate system will make our analysis the
easiest and most straightforward.



The Position Vector

Consider a point whose location in space is specified with
Cartesian coordinates (e.g., P(x,y,2)). Now consider the directed
distance (a vector quantityl) extending from the origin to this
point.

N\
z

P(x.y.2)

N

This particular directed distance—a vector beginning at the
origin and extending outward to a point—is a very important and
fundamental directed distance known as the position vector r.

Using the Cartesian coordinate system, the position vector can
be explicitly written as:




* Note that given the coordinates of some point (e.g., x=1, y
=2, z=-3), we can easily determine the corresponding position
vector (e.g., 7 =4, +2a,-3a,).

* Moreover, given some specific position vector (e.g.,
F=4a -2a,), we can easily determine the correspondin
y ., Y g

coordinates of that point (e.g., x=0, y =4, z=-2).

In other words, a position vector 7 is an alternative way to
denote the location of a point in space! We can use three
coordinate values to specify a point's location, or we can use a
single position vector 7.

I see! The position vector is essentially a
pointer. Look at the end of the vector,
and you will find the point specified/




The magnitude of r

Note the magnitude of any and all position vectors is:

F|=NF-F=x*+y?+2* =r

The magnitude of the position vector is equal to the coordinate
value 7 of the point the position vector is pointing to!

GHey, this makes perfect \
sense! Doesn't the coordinate
value r have a physical
interpretation as the distance
between the point and the origin?

N

A: That's right! The magnitude of a directed distance vector is
equal to the distance between the two points—in this case the
distance between the specified point and the origin!

Alternative forms of the position vector

Be carefull Although the position vector is correctly expressed
as:
r=xa,+ya +za,



It is NOT CORRECT to express the position vector as:

r#pa,+pa,+za,

nor

r+ra+0a+¢a,

NEVER, EVER express the position vector in either of these
two ways!

It should be readily apparent that the two expression above
cannot represent a position vector—because neither is even a
directed distance!

e
d

A: Recall that the magnitude of the position vector 7 has units
of distance. Thus, the scalar components of the position
vector must also have units of distance (e.g., meters). The

coordinates x,y,z,p and r do have units of distance, but
coordinates € and ¢ do not.

Q: Why sure—it is of )

course readily apparent

to me—>but why don't you

go ahead and explain it to

those with less insight!
i

Thus, the vectors 64, and ¢a, cannot be vector components of

a position vector—or for that matter, any other directed
distance!



Instead, we can use coordinate transforms to show that:

F=xd,+ya +za,
= pcosga, + psinga, +za,

=rsinfcosga, +rsindsinga, + rcosda,

ALWAYS use one of these three expressions of a position
vectorll

Note that in each of the three expressions above, we use
Cartesian base vectors. The scalar components can be
expressed using Cartesian, cylindrical, or spherical coordinates,
but we must always use Cartesian base vectors.

G Why must we always use\
Cartesian base vectors? You

said that we could express any
vector using spherical or base
vectors. Doesn’t this also

(pp/y to position vectors?

A: The reason we only use Cartesian base vectors for
constructing a position vector is that Cartesian base vectors are

the only base vectors whose directions are fixed—independent
of position in spacel



To see why this is important, let's go ahead and change the base
vectors used to express the position vector from Cartesian to
spherical or cylindrical. If we do this, we find:

/\

r +ya,
+Z

> Q> Q)
Q) Q)

I
I D X

Thus, the position vector expr'essed with the cylindrical
coordinate system is r = pa, + z a,, while with the spherical

coordinate system we get r=ra..

The problem with these two expressions is that the direction of
base vectors a, and a. are not constant. Instead, they
themselves are vector fields—their direction is a function of
position!

Thus, an expression such as 7 = 6 4. does not explicitly define a

point in space, as we do not know in what direction base vector
a. is pointing! The expression 7 = 6a. does tell us that the

coordinate r =6, but how do we determine what the values of
coordinates @ or ¢ are? (answer: we cant!)

Compare this to the expression:

r =a +2a -3a



Here, the point described by the position vector is clear and
unambiguous. This position vector identifies the point Ax=1, y
=2, z=-3).

Lesson learned: Always express a position vector using
Cartesian base vectors (see box on previous page)!




Applications of the

Position Vector

Position vectors are particularly useful when we need to
determine the directed distance between two arbitrary points

in space. A z

Pa(x.y,2)

PB(X,}/,Z)

If the location of point P, is denoted by position vector r,,
and the location of point Pg by position vector r,, then the
directed distance from point P, to point Pg, is:

We can use this directed distance R,, to describe much about
the relative locations of point P4 and Py



For example, the physical distance between these two points
is simply the magnitude of this directed distance:

y4

Palx,y,2)
Pe(x.y.2)

d:‘@e‘:|’§_a|

Likewise, we can specify the direction foward point Pg, with
respect to point P4, by find the unit vector 4,,:




Vector Field Notation

A vector field describes a vector value at every location in
space. Therefore, we can denote a vector field as A(x,y,2), or
A(p,0,z),0r A(r,0,¢), explicitly showing that vector quantity
A is a function of position, as denoted by some set of
coordinates.

However, as we have emphasized before, the physical reality
that vector field A expresses is independent of the
coordinates we use to express it. In other words, although
the math may look very different, we find that:

Alxy,.2)= A(p,¢.z2) = A(r.0,9).

Alternatively then, we typically express a vector field as
simply:

A(7)

This symbolically says everything that we need to convey;
vector A is a function of position—it is a vector field!

Note that the vector field notation A(7) does not explicitly

specify a coordinate system for expressing A. That's up to
you to decide!



Now, in the vector field expression A(7) we note that there

are two vectors: A and . It is ridiculously important that
you understand what each of these two vectors represents!

Position vector r denotes the location in space where
vector A is defined.

For example, consider the vector fieldV(r), which describes
the wind velocity across the state of Kansas.
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In this map, the origin has been placed at Lawrence. The
locations of Kansas tfowns can thus be identified using position
vectors (units in miles):



n=-400a, +20 c?y the location of Goodland, KS

rn=-90a +70 5y the location of Marysville, KS
rn=30a,-5a the location of Fort Scott,KS

r,=40a, -90 a} the location of Fort Scott KS

I R A

r=-130a, -70 c?y the location of Newton, KS

Evaluating the vector field V(r) at these locations provides
the wind velocity at each Kansas town (units of mph).

V()=15a, -17 a, === the wind velocity in Goodland, KS
V() =15a,-9a, ==> the wind velocity in Marysville, KS
V() =1la, ==p the wind velocity in Olathe, KS
V(r,)=7a, ==p the wind velocity in Fort Scott, KS

V()=9a,-4a, === thewind velocity in Newton, KS



Remember, from vector field A(7), we can the magnitude and
direction of the discrete vector A that is located at the point
defined by position vector 7.

This discrete vector A does not "extend” from the origin to
the point described by position vector 7. Rather, the
discrete vector A describes a quantity at that point, and that
point only. The magnitude of vector A does not have units of
distance! The length of the arrow that represents vector A is
merely symbolic—its length has no direct physical meaning.

On the other hand, the position vector 7, being a directed
distance, does extend from the origin to a specific point in
space. The magnitude of a position vector 7 is distance—the
length of the position vector arrow has a direct physical
meaning!

Additionally, we should again note that a vector field need not
be static. A dynamic vector field is likewise a function of
time, and thus can be described with the notation:

A(r.,t1)



A Gallery of Vector Fields

To help understand how a vector field relates to its
mathematical representation using base vectors, carefully
examine and consider these examples, plotted on either the
x-y plane (i.e, the plane with all points whose coordinate z=0)
or the x-z plane (i.e, the plane with all points whose
coordinate y=0).

Spend some time studying each of these examples, until you
see how the math relates to the vector field plot and vice
versa.

Remember, vector fie/a’s—\
expressed in terms of

scalar components and base
vectors—are the
mathematical language that
we will use to describe much
of electromagnetics—you
must learn how to speak

\and interpret this /anguagy
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