3-3 Current and Current Density

Reading Assignment: pp.63-68

Charge is often moving!

HO: Charge and Current

A. Volume Current Density

Problem!: Most often, charge is **not** restricted to a wire, but instead flows "willy nilly" throughout some volume V.

Q:

 \rightarrow

A: HO: Volume Current Density

Q:

A: <u>HO: The Current I through Surface S</u>

B. Surface Current Density

HO: Surface Current Density

C. Charge Velocity

If charges are moving, then they must have some **velocity**.

Q:

A: HO: Charge Velocity and Current Density

wire —

Charge and Current

Say we have a conductor (e.g., wire) with I=1 Ampere of current flowing through it.

1 Amp

Q: What does this mean, physically ?

A: Current I simply describes the **rate** at which **net** charge passes through the wire cross-sectional surface S. For example, if a **net** charge ΔQ moves across surface S in some small amount of time Δt , we find that:

$$I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$

Thus, we find that 1 Amp means +1.0 Coulomb of net charge passes by a location on the wire each second, with the net charge in this case flowing from left to right.

wire

Q: The current is **positive**, does this mean that the current is made up of **positive** charge?

A: No! Current generally consists of both positively and negatively charged particles.

Remember, current is the **net** change in charge with respect to time.

For example, say **positive** charges are moving from **left to right** through the wire:

Ι、

S

The current due to these charges is **positive**, as the total net charge on the right side of the surface is **increasing** with time.

That was pretty obvious, but here's the **tricky** part: say **negative** charges are moving from **right** to left through the wire (the opposite direction of that above).

Note in this case, the total charge on the right side of S is again increasing!

* With the first case, the net charge was increasing because positive charges were entering the right side. For this case, the net charge on the right side is **also** increasing, but because negative charge is **leaving** the right side !

* For reasons we shall learn about later, if positive charge moves one direction, then negative charge will generally move in the **opposite** direction. Therefore, total current is composed of charges moving in **both** directions:

$\mathcal{I} = \mathcal{I}^+ + \mathcal{I}^-$

* Generally speaking, it **does not matter** (in fact we generally cannot tell) whether the particles that form a specific current are negative or positive—all that matters is the **net** change in charge across a surface.

Volume Current Density

Say at a given point \overline{r} located in a volume V, charge is moving in **direction** \hat{a}_{max} .

I îa_{max}

V

Now, consider a **small surface** Δs that is centered at the point denoted by \overline{r} , and oriented such that it is orthogonal to unit vector \hat{a}_{max} . Since charge is moving across this small surface at some rate (coulombs/sec), we can define a **current** $\Delta I = \Delta Q / \Delta t$ that represents the current flowing through Δs .

Note vector $\Delta I \hat{a}_{max}$ therefore represents both the magnitude (ΔI) and direction \hat{a}_{max} of the current flowing through surface area Δs at point \overline{r} .

From this, we can define a **volume current density** $\mathbf{J}(\overline{\mathbf{r}})$ at each and every point $\overline{\mathbf{r}}$ in volume V by **normalizing** $\Delta \mathbf{I} \, \hat{a}_{max}$ by dividing by the surface area $\Delta \mathbf{s}$:

$$\mathbf{J}(\overline{\mathbf{r}}) = \lim_{\Delta S \to 0} \frac{\Delta \mathcal{I} \ \hat{a}_{max}}{\Delta S} \qquad \left[\frac{\mathrm{Amps}}{\mathrm{m}^2}\right]$$

The result is a vector field !

For example, current density $\mathbf{J}(\overline{\mathbf{r}})$ might look like:

NOTE: The **unit** of **volume** current density is **current/area**; for example, A/m^2 .

N V

<u>The Current I</u> <u>through Surface S</u>

Given that we know volume current density $\mathbf{J}(\bar{r})$ throughout some volume, we can find the **total current** through **any** arbitrary **surface S** as:

$$I = \iint_{S} \mathbf{J}(\overline{r_{s}}) \cdot \overline{ds} \qquad [Amps]$$

This integral is in the form of the **surface integral** we studied in Section 2-5.

Note the integrand has units of current (amps):

$$\mathbf{J}(\overline{r_s}) \cdot \overline{ds} = J_n(\overline{r_s}) \left| \overline{ds} \right| \qquad \left[\left(\frac{\mathrm{Amps}}{\mathrm{m}^2} \right) \left(\mathrm{m}^2 \right) = \mathrm{Amps} \right]$$

Physically, the value $\Delta I = \mathbf{J}(\overline{r}) \cdot \overline{ds}$ is the current flowing **through** the tiny differential surface Δs , located at point \overline{r} on surface S. $\mathbf{J}(\overline{r}) \mathbf{r} \hat{a}_n$

 ΔS

* Therefore if we **add** up (i.e., integrate) the current flowing through **each** and every differential surface element Δs that makes up surface *S*, we determine the **total** current *I* flowing **through** surface *S*.

* Note the sign of current I is determined by the direction of differential surface vector \overline{ds} . For example, if I is positive, then the current is flowing through the surface in the direction of \overline{ds} .

* So, consider the case where $J(\overline{r})$ describes current that is flowing **tangential** to **every point** on surface S. In other words, the current density has no **normal** component on the surface S!

ds

As a result, we find that $\mathbf{J}(\overline{r}) \cdot \overline{ds} = 0$ at every point on the surface, and therefore the surface integral results in I = 0.

J(r

This of course is **physically** the correct answer! Current is flowing **along** the surface, but none is flowing **through** it.

S

To get a **non-zero** amount of total current, the current density must have a **normal** component at **some** points on the surface.

 $\mathbf{J}(\bar{\mathbf{r}})$

ds

For the case above, $I \neq 0$.

Q: We know that if $\mathbf{J}(\overline{\mathbf{r}}) \cdot \overline{ds} = 0$ at all points on a surface, then the current flowing through the surface is zero (I=0).

Is the converse true? That is, if the total current through a surface is zero, does that mean that the current density is tangential to the surface at all points?

A:

S

1/4

Surface Current Density

Consider now the problem where we have moving surface charge $\rho_s(\overline{r})$.

Say at a given point \overline{r} located on a surface S, charge is moving in **direction** \hat{a}_{max} .

Now, consider a **small length** of contour $\Delta \ell$ that is centered at point \overline{r} , and oriented such that it is orthogonal to unit vector \hat{a}_{max} . Since charge is moving across this small length, we can define a **current** ΔI that represents the current flowing across

S

 $\Lambda \ell$.

Note vector $\Delta I \hat{a}_{max}$ therefore represents both the magnitude (ΔI) and direction \hat{a}_{max} of the current flowing across contour $\Delta \ell$ at point \overline{r} .

From this, we can define a surface current density $\mathbf{J}_{s}(\overline{\mathbf{r}})$ at every point $\overline{\mathbf{r}}$ on surface S by normalizing $\Delta I \, \hat{a}_{max}$ by dividing by the length $\Delta \ell$:

$$\mathbf{J}_{s}(\overline{\mathbf{r}}) = \lim_{\Delta \ell \to 0} \frac{\Delta \mathcal{I} \ \hat{a}_{max}}{\Delta \ell} \qquad \left[\frac{\mathrm{Amps}}{\mathrm{m}}\right]$$

The result is a vector field !

NOTE: The unit of **surface** current density is current/**length**; for example, A/m.

Given that we know surface current density $\mathbf{J}_{s}(\overline{\mathbf{r}})$ throughout some volume, we can find the total **current** across **any** arbitrary **contour** \mathbf{C} as:

$$I = \int_{C} \mathbf{J}_{s}(\overline{\mathbf{r}}) \cdot \hat{a}_{n} d\ell$$

This looks very much like the contour integral we studied in the previous chapter. However, there is one **big** difference!

Jim Stiles

The differential vector $\hat{a}_n d\ell$ is a vector that tangential to **surface** S (i.e., it lies on surface S), but is **normal** to contour C!

This of course is the **opposite** of the differential vector $\overline{d\ell}$ in that $\overline{d\ell}$ lies **tangential** to the contour:

 $\hat{a}_n d\ell$

As a result, we find that $\overline{d\ell} \cdot \hat{a}_n d\ell = 0$. However, note the **magnitude** of each vector is identical:

$$\left|\overline{d\ell}\right| = \left|\hat{a}_n \, d\ell\right| = d\ell$$

For example, consider the planar surface z=3. On this surface is a contour that is a circle, radius 2, centered around the z-axis.

For the contour integrals we studied in Section 2-5, we would use:

$$d\ell = \hat{a}_{\phi} \rho d\phi$$

However, to determine the total current flowing across the contour, we use $\hat{a}_n = \hat{a}_\rho$ and $d\ell = \rho d\phi$. Note the directions of these two differential vectors are different, but their magnitudes are the same.

С

 ΔS

 $\leftarrow^{\Delta \ell}$

X

X

 $t + \Delta t$

<u>Charge Velocity and</u> <u>Current Density</u>

 $\Delta \boldsymbol{v}$

 $\Delta \boldsymbol{\nu}$

U

Consider a small volume (Δv) filled with charge Q.

If the charge is **uniformly** distributed, then the **charge density** is:

$$\rho_{\nu}(\overline{\mathbf{r}}) = \frac{Q}{\Lambda \nu}$$

Say these charges are moving at velocity $\mathbf{u} = u_x \hat{a}_x$. Then, in a small time Δt , the charged particles will have moved in the *x*-direction a distance $\Delta \ell$:

$$\Delta \ell = \boldsymbol{u}_{\boldsymbol{x}} \, \Delta \boldsymbol{t}$$

Q: How much charge $\triangle Q$ moves across surface $\triangle s$ in time $\triangle t$?

A: The amount is **equal** to the charge occupying **volume** $\Delta s \Delta \ell$:

$$\Delta \boldsymbol{Q} = \boldsymbol{\rho}_{\nu} \left(\boldsymbol{\bar{r}} \right) \left(\Delta \boldsymbol{s} \ \Delta \ell \right)$$

But remember, $\Delta \ell = u_x \Delta t$. Therefore:

$$\Delta \boldsymbol{Q} = \rho_{\nu}(\overline{\mathbf{r}}) \boldsymbol{u}_{x} \Delta \boldsymbol{s} \Delta \boldsymbol{t}$$

And dividing by Δt :

$$\frac{\Delta Q}{\Delta t} = \rho_{v}(\overline{r}) u_{x} \Delta s$$

Hey! Charge divided by time is equal to current !

$$\Delta \boldsymbol{I} = \frac{\Delta \boldsymbol{Q}}{\Delta \boldsymbol{t}} = \rho_{\nu} \left(\boldsymbol{\bar{r}} \right) \boldsymbol{u}_{x} \Delta \boldsymbol{s}$$

The current ΔI is the current flowing **through** the small surface Δs . We can therefore determine the **current density** on this surface:

$$J_{x} = \frac{\Delta I}{\Delta s} = \rho_{v} \left(\overline{r} \right) \ u_{x}$$

In other words, current density is equal to the **product** of the charge density and the charge velocity. In general, we can say:

$$\mathbf{J}(\overline{\mathbf{r}}) = \rho_{\nu}(\overline{\mathbf{r}})\mathbf{u}(\overline{\mathbf{r}})$$

Jim Stiles

where $\mathbf{u}(\overline{\mathbf{r}})$ is a vector field that describes the **velocity** of the moving charge at every point $\overline{\mathbf{r}}$.

IMPORTANT NOTE! The velocity of charge is **NOT** the speed of light! In fact, charge velocity is generally **nowhere** near $c = 3 \times 10^8$ m/sec (its more like 3×10^{-2} m/sec!).

Charge velocity is generally dependent on the **type** of particles that carry the charge (e.g., free electrons, positive ions).

For example, we can denote \mathbf{u}^+ the velocity of **positively** charged particles, while \mathbf{u}^- denotes the velocity of **negatively** charged particles.

We find that typically, \mathbf{u}^+ and \mathbf{u}^- point in **opposite** directions!

U

U

and the velocities will have **unequal** magnitudes:

 $|\mathbf{u}^+| \neq |\mathbf{u}^-|$

The total current density can therefore be expressed as:

$$\mathbf{J}(\overline{\mathbf{r}}) = \mathbf{J}^{+}(\overline{\mathbf{r}}) + \mathbf{J}^{-}(\overline{\mathbf{r}})$$
$$= \rho^{+}(\overline{\mathbf{r}})\mathbf{u}^{+}(\overline{\mathbf{r}}) + \rho^{-}(\overline{\mathbf{r}})\mathbf{u}^{-}(\overline{\mathbf{r}})$$

Jim Stiles

Q: So, $\mathbf{J}^+(\overline{\mathbf{r}})$ and $\mathbf{J}^-(\overline{\mathbf{r}})$ must point in opposite directions, since $\mathbf{u}^+(\overline{\mathbf{r}})$ and $\mathbf{u}^-(\overline{\mathbf{r}})$ point in opposite directions ?

A: NO! It is true that the charges flow in opposite directions, but the charges also have opposite signs ! Recall $\rho_{\nu}^{+}(\overline{\mathbf{r}}) > 0$ and $\rho_{\nu}^{-}(\overline{\mathbf{r}}) < 0$, therefore, vectors $\mathbf{J}^{+}(\overline{\mathbf{r}}) = \rho_{\nu}^{+}(\overline{\mathbf{r}})\mathbf{u}^{+}(\overline{\mathbf{r}})$ and $\mathbf{J}^{-}(\overline{\mathbf{r}}) = \rho_{\nu}^{-}(\overline{\mathbf{r}})\mathbf{u}^{-}(\overline{\mathbf{r}})$ each typically point in the same direction!

Remember that, for example, if positive charge is moving **left** and negative charge is moving **right**, then **both** result in **current** flowing toward the **left**.

