4-6 Voltage and Electric Potential

Reading Assignment: pp. 107-116

$$
\int_{c} \mathrm{E}(\bar{r}) \cdot \overline{d \ell}
$$

$\int_{c} \mathrm{E}(\bar{r}) \cdot \overline{d \ell}=g\left(\bar{r}_{2}\right)-g\left(\bar{r}_{1}\right)$, where $\mathrm{E}(\bar{r})=\nabla g(\bar{r})$
Q:

A: HO: Voltage and Electric Potential

1. a static electric field $E(\bar{r})$ (a vector field).
2. an electrostatic potential field $V(\bar{r})$ (a scalar field!).

Q:

A:

HO: Electric Potential for Point Charge
Q:

A:

HO: Electric Potential Function for Charge
Densities

Example: The Electric Dipole
Q:

A: HO: The Dipole Moment

Voltage and Electric

Potential

An important application of the line integral is the calculation of work. Say there is some vector field $F(\bar{r})$ that exerts a force on some object.

Q: How much work (W) is done by this vector field if the object moves from point P_{a} to P_{b}, along contour C??

A: We can find out by evaluating the line integral:

Say this object is a charged particle with charge Q, and the force is applied by a static electric field $E(\bar{r})$. We know the force on the charged particle is:

$$
F(\bar{r})=Q E(\bar{r})
$$

and thus the work done by the electric field in moving a charged particle along some contour C is:

A: Yes there is! Recall that a static electric field is a conservative vector field. Therefore, we can write any electric field as the gradient of a specific scalar field $V(\bar{r})$:

$$
\mathrm{E}(\overline{\mathrm{r}})=-\nabla V(\overline{\mathrm{r}})
$$

We can then evaluate the work integral as:

$$
\begin{aligned}
W_{a b} & =Q \int_{c} E(\bar{r}) \cdot \overline{d \ell} \\
& =-Q \int_{c} \nabla V(\bar{r}) \cdot \overline{d \ell} \\
& =-Q\left[V\left(\overline{r_{b}}\right)-V\left(\bar{r}_{a}\right)\right] \\
& =Q\left[V\left(\overline{r_{a}}\right)-V\left(\overline{r_{b}}\right)\right]
\end{aligned}
$$

We define:

$$
V_{a b} \doteq V\left(\bar{r}_{a}\right)-V\left(\bar{r}_{b}\right)
$$

Therefore:

$$
W_{a b}=Q V_{a b}
$$

Q: So what the heck is $V_{a b}$? Does it mean any thing? Do we use it in engineering?

A: First, consider what $W_{a b}$ is!
The value $W_{a b}$ represents the work done by the electric field on charge Q when moving it from point P_{a} to point P_{b}. This is precisely the same concept as when a gravitational force field moves an object from one point to another.

The work done by the gravitational field in this case is equal to the difference in potential energy (P.E.) between the object at these two points.

The value $W_{a b}$ represents the same thing! It is the difference in potential energy between the charge at point P_{a} and at P_{b}.

Q: Great, now we know what $W_{a b}$ is. But the question was, WHAT IS $V_{a b}$!?!

A: That's easy! Just rearrange the above equation:

$$
V_{a b}=\frac{W_{a b}}{Q}
$$

See? The value $V_{a b}$ is equal to the difference in potential energy, per coulomb of charge!

* In other words $V_{a b}$ represents the difference in potential energy for each coulomb of charge in Q.
* Another way to look at it: $V_{a b}$ is the difference in potential energy if the particle has a charge of 1
Coulomb (i.e., $Q=1$).
Note that $V_{a b}$ can be expressed as:

$$
\begin{aligned}
V_{a b} & =\int_{c} \mathrm{E}(\overline{\mathrm{r}}) \cdot \overline{d \ell} \\
& =V\left(\bar{r}_{a}\right)-V\left(\bar{r}_{b}\right)
\end{aligned}
$$

where point P_{a} lies at the beginning of contour C, and P_{b} lies at the end.

We refer to the scalar field $V(\bar{r})$ as the electric potential function, or the electric potential field.

We likewise refer to the scalar value $V_{a b}$ as the electric potential difference, or simply the potential difference between point P_{a} and point P_{b}.

Note that $V_{a b}$ (and therefore $V(\bar{r})$), has units of:

$$
V_{a b}=\frac{W_{a b}}{Q} \quad\left[\frac{\text { Joules }}{\text { Coulomb }}\right]
$$

Joules/Coulomb is a rather awkward unit, so we will use the other name for it-VOLTS!

$$
\frac{1 \text { Joule }}{\text { Coulomb }} \doteq 1 \mathrm{Volt}
$$

Q: Hey! We used volts in circuits class. Is this the same thing?

A: It is precisely the same thing!
Perhaps this will help. Say P_{a} and P_{b} are two points somewhere on a circuit. But let's call these points something different, say point + and point - .

Therefore, V represents the potential difference (in volts) between point (i.e., node) + and point (node) - . Note this value can be either positive or negative.

Q: But, does this mean that circuits produce electric fields?

A: Absolutely! Anytime you can measure a voltage (i.e., a potential difference) between two points, an electric field must be present!

Electric Potential for

 Point ChargeRecall that a point charge Q, located at the origin ($\vec{r}=0$), produces a static electric field:

$$
E(\bar{r})=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{a}_{r}
$$

Now, we know that this field is the gradient of some scalar field:

$$
E(\bar{r})=-\nabla V(\bar{r})
$$

Q: What is the electric potential function $V(\bar{r})$ generated by a point charge Q, located at the origin?

A: We find that it is:

$$
V(\overline{\mathrm{r}})=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

Q: Where did this come from? How do we know that this is the correct solution?

A: We can show it is the correct solution by direct substitution!

$$
\begin{aligned}
\mathrm{E}(\overline{\mathrm{r}}) & =-\nabla V(\overline{\mathrm{r}}) \\
& =-\nabla\left(\frac{Q}{4 \pi \varepsilon_{0} r}\right) \\
& =-\frac{\partial}{\partial r}\left(\frac{Q}{4 \pi \varepsilon_{0} r}\right) \hat{a}_{r}+0 \\
& =\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{a}_{r}
\end{aligned}
$$

The correct result!

Q: What if the charge is not located at the origin?

A: Substitute r with $|\bar{r}-\vec{r}|$, and we get:

$$
V(\overline{\mathrm{r}})=\frac{Q}{4 \pi \varepsilon_{0}|\overline{\mathrm{r}}-\overline{\mathrm{r}}|}
$$

Where, as before, the position vector \vec{r} denotes the location of the charge Q, and the position vector \bar{r} denotes the location in space where the electric potential function is evaluated.

The scalar function $V(\bar{r})$ for a point charge can be shown graphically as a contour plot:

Or, in three dimensions as:

Note the electric potential increases as we get closer to the point charge (located at the origin). It appears that we have "mountain" of electric potential; an appropriate analogy, considering that the potential energy of a mass in the Earth's gravitational field increases with altitude (i.e., height)!

Recall the electric field produced by a point charge is a vector field that looks like:

Combining the electric field plot with the electric potential plot, we get:

Given our understanding of the gradient, the above plot makes perfect sense! Do you see why?

Now lets examine another example, where three point charges (one of them negative!) are present.

Electric Potential Function for Charge Densities

Recall the total static electric field produced by 2 different charges (or charge densities) is just the vector sum of the fields produced by each:

$$
E(\bar{r})=E_{1}(\bar{r})+E_{2}(\bar{r})
$$

Since the fields are conservative, we can write this as:

$$
\begin{aligned}
E(\bar{r}) & =E_{1}(\bar{r})+E_{2}(\bar{r}) \\
-\nabla V(\bar{r}) & =-\nabla V_{1}(\bar{r})-\nabla V_{2}(\bar{r}) \\
-\nabla V(\bar{r}) & =-\nabla\left(V_{1}(\bar{r})+V_{2}(\bar{r})\right)
\end{aligned}
$$

Therefore, we find,

$$
V(\bar{r})=V_{1}(\bar{r})+V_{2}(\bar{r})
$$

In other words, superposition also holds for the electric potential function! The total electric potential field produced by a collection of charges is simply the sum of the electric potential produced by each.

Consider now some distribution of charge, $\rho_{v}(\bar{r})$. The amount of charge $d Q$, contained within small volume $d v$, located at position \vec{r}, is:

$$
d Q=\rho_{v}(\vec{r}) d v^{\prime}
$$

The electric potential function produced by this charge is therefore:

$$
\begin{aligned}
d V(\bar{r}) & =\frac{d Q}{4 \pi \varepsilon_{0}|\bar{r}-\vec{r}|} \\
& =\frac{\rho_{v}(\vec{r}) d v^{\prime}}{4 \pi \varepsilon_{0}|\bar{r}-\vec{r}|}
\end{aligned}
$$

Therefore, integrating across all the charge in some volume V, we get:

$$
V(\bar{r})=\iiint_{V} \frac{\rho_{v}(\vec{r})}{4 \pi \varepsilon_{0}|\bar{r}-\vec{r}|} d v^{\prime}
$$

Likewise, for surface or line charge density:

$$
\begin{aligned}
& V(\overline{\mathrm{r}})=\iint_{s} \frac{\rho_{s}(\overrightarrow{\mathrm{r}})}{4 \pi \varepsilon_{0}|\overline{\mathrm{r}}-\overrightarrow{\mathrm{r}}|} d s^{\prime} \\
& V(\overline{\mathrm{r}})=\int_{C} \frac{\rho_{\ell}(\overrightarrow{\mathrm{r}})}{4 \pi \varepsilon_{0}|\overline{\mathrm{r}}-\overrightarrow{\mathrm{r}}|} d \ell^{\prime}
\end{aligned}
$$

Note that these integrations are scalar integrations-typically they are easier to evaluate than the integrations resulting from Coulomb's Law.

Once we find the electric potential function $V(\bar{r})$, we can then determine the total electric field by taking the gradient:

$$
\mathrm{E}(\bar{r})=-\nabla V(\bar{r})
$$

Thus, we now have three (!) potential methods for determining the electric field produced by some charge distribution $\rho_{v}(\bar{r})$:

1. Determine $E(\bar{r})$ from Coulomb's Law.
2. If $\rho_{v}(\bar{r})$ is symmetric, determine $\mathbf{E}(\bar{r})$ from Gauss's Law.
3. Determine the electric potential function $V(\bar{r})$, and then determine the electric field as $\mathrm{E}(\bar{r})=-\nabla V(\bar{r})$.

Q: Yikes! Which of the three should we use??
A: To a certain extent, it does not matter! All three will provide the same result (although $\rho_{v}(\bar{r})$ must be symmetric to use method 2!).

However, if the charge density is symmetric, we will find that using Gauss's Law (method 2) will typically result in much less work!

Otherwise (i.e., for non-symmetric $\rho_{v}(\bar{r})$), we find that sometimes method 1 is easiest, but in other cases method 3 is a bit less stressful (i.e., you decide!).

Example: The Electric
 Dipole

Consider two point charges $\left(Q_{1}\right.$ and $\left.Q_{2}\right)$, each with equal magnitude but opposite sign, i.e.:

$$
Q_{1}=Q \quad \text { and } \quad Q_{2}=-Q \text { so } Q_{1}=-Q_{2}
$$

Say these two charges are located on the z-axis, and separated by a distance d.

The Electric Dipole

We call this charge configuration an electric dipole. Note the total charge in a dipole is zero (i.e., $Q_{1}+Q_{2}=Q-Q=0$). But, since the charges are located at different positions, the electric field that is created is not zero!

Q: Just what is the electric field created by an electric dipole?

A: One approach is to use Coulomb's Law, and add the resulting electric vector fields from each charge together.

However, let's try a different approach. Let's find the electric potential field resulting from an electric dipole. We can then take the gradient to find the electric field!

Note that this should be relatively straightforward! We already know the electric potential resulting from a single point charge-the electric potential resulting from two point charges is simply the summation of each:

$$
V(\bar{r})=V_{1}(\bar{r})+V_{2}(\bar{r})
$$

where the electric potential $V_{1}(\bar{r})$, created by charge Q_{1}, is:

$$
V_{1}(\bar{r})=\frac{Q_{1}}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}_{1}\right|}=\frac{Q}{4 \pi \varepsilon_{0}\left|\bar{r}-d / 2 \hat{a}_{z}\right|}
$$

and electric potential $V_{2}(\bar{r})$, created by charge Q_{2}, is:

$$
V_{2}(\bar{r})=\frac{Q_{2}}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}_{2}\right|}=\frac{-Q}{4 \pi \varepsilon_{0}\left|\bar{r}+d / 2 \hat{a}_{z}\right|}
$$

Therefore the total electric potential field is:

$$
\begin{aligned}
V(\bar{r}) & =\frac{Q}{4 \pi \varepsilon_{0}\left|\bar{r}-d / 2 \hat{a}_{z}\right|}-\frac{Q}{4 \pi \varepsilon_{0}\left|\bar{r}+d / 2 \hat{a}_{z}\right|} \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{\left|\bar{r}-d / 2 \hat{a}_{z}\right|}-\frac{1}{\left|\bar{r}+d / 2 \hat{a}_{z}\right|}\right)
\end{aligned}
$$

If the point denoted by \bar{r} is a significant distance away from the electric dipole (i.e., $|\overline{\mathbf{r}}| \gg d$), we can use the following approximations:

$$
\begin{aligned}
& \frac{1}{\left|\bar{r}-\frac{d}{2} \hat{a}_{z}\right|} \approx \frac{1}{|\bar{r}|}+\frac{d \cos \theta}{2|\bar{r}|}=\frac{1}{r}+\frac{d \cos \theta}{2 r^{2}} \\
& \frac{1}{\left|\bar{r}+d / 2 \hat{a}_{z}\right|} \approx \frac{1}{|\bar{r}|}-\frac{d \cos \theta}{2|\overline{\mathbf{r}}|}=\frac{1}{r}-\frac{d \cos \theta}{2 r^{2}}
\end{aligned}
$$

where r and θ are the spherical coordinate variables of the point denoted by \bar{r}.

Therefore, we find:

$$
\begin{aligned}
V(\bar{r}) & =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{\left|\bar{r}-\frac{d}{2} \hat{a}_{z}\right|}-\frac{1}{\left|\bar{r}+d / 2 \hat{a}_{z}\right|}\right) \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\left(\frac{1}{r}+\frac{d \cos \theta}{2 r^{2}}\right)-\left(\frac{1}{r}-\frac{d \cos \theta}{2 r^{2}}\right)\right) \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{d \cos \theta}{r^{2}}
\end{aligned}
$$

Note the result. The electric potential field produced by an electric dipole, when centered at the origin and aligned with the z-axis is:

$$
V(\bar{r})=\frac{Q d}{4 \pi \varepsilon_{0}} \frac{\cos \theta}{r^{2}}
$$

Q: But the original question was, what is the electric field produced by an electric dipole?

A: Easily determined! Just take the gradient of the electric potential function, and multiply by -1 .

$$
\begin{aligned}
E(\bar{r}) & =-\nabla V(\bar{r}) \\
& =-\nabla\left(\frac{Q d}{4 \pi \varepsilon_{0}} \frac{\cos \theta}{r^{2}}\right) \\
& =\frac{-Q d}{4 \pi \varepsilon_{0}}\left[\cos \theta \frac{d}{d r}\left(\frac{1}{r^{2}}\right) \hat{a}_{r}+\frac{1}{r^{3}} \frac{d(\cos \theta)}{d \theta} \hat{a}_{\theta}\right] \\
& =\frac{-Q d}{4 \pi \varepsilon_{0}}\left[\left(\frac{-2 \cos \theta}{r^{3}}\right) \hat{a}_{r}-\frac{\sin \theta}{r^{3}} \hat{a}_{\theta}\right]
\end{aligned}
$$

The static electric field produced by an electric dipole, when centered at the origin and aligned with the z-axis is:

$$
\mathrm{E}(\bar{r})=\frac{Q d}{4 \pi \varepsilon_{0}} \frac{1}{r^{3}}\left[2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right]
$$

Yikes! Contrast this with the electric field of a single point charge. The electric dipole produces an electric field that:

1) Is proportional to r^{-3} (as opposed to r^{-2}).
2) Has vector components in both the \hat{a}_{r} and \hat{a}_{θ} directions (as opposed to just \hat{a}_{r}).

In other words, the electric field does not point away from the electric dipole!

The electric potential produced by an electric dipole looks like:

And the electric field produced by the electric dipole is:

The Dipole Moment

Note that the dipole solutions:

$$
\mathrm{E}(\overline{\mathrm{r}})=\frac{Q d}{4 \pi \varepsilon_{0}} \frac{1}{r^{3}}\left[2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right]
$$

provide the fields produced by an electric dipole that is:

1. Centered at the origin.
2. Aligned with the z-axis.

Q: Well isn't that just grand. I suppose these equations are thus completely useless if the dipole is not centered at the origin and/or is not aligned with the z-axis!*!@!

A: That is indeed correct! The expressions above are only valid for a dipole centered at the origin and aligned with the z axis.

To determine the fields produced by a more general case (ie., arbitrary location and alignment), we first need to define a new quantity p, called the dipole moment:

$$
p=Q d
$$

Note the dipole moment is a vector quantity, as the d is a vector quantity.

Q: But what the heck is vector d ??

A: Vector d is a directed distance that extends from the location of the negative charge, to the location of the positive charge. This directed distance vector d thus describes the distance between the dipole charges (vector magnitude), as well as the orientation of the charges (vector direction).

Therefore $\mathbf{d}=|\mathbf{d}| \hat{a}_{d}$, where:
$|d|=$ distance d between charges and

$$
\hat{a}_{d}=\text { the orientation of the dipole }
$$

Note if the dipole is aligned with the z-axis, we find that $\mathbf{d}=d \hat{a}_{z}$. Thus, since $\hat{a}_{z} \cdot \hat{a}_{r}=\cos \theta$, we can write the expression:

$$
\begin{aligned}
Q d \cos \theta & =Q d \hat{a}_{z} \cdot \hat{a}_{r} \\
& =Q \mathbf{d} \cdot \hat{a}_{r} \\
& =\mathbf{p} \cdot \hat{a}_{r}
\end{aligned}
$$

Therefore, the electric potential field created by a dipole centered at the origin and aligned with the z-axis can be rewritten in terms of its dipole moment p :

$$
\begin{aligned}
V(\bar{r}) & =\frac{Q d}{4 \pi \varepsilon_{0}} \frac{\cos \theta}{r^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{a}_{r}}{r^{2}}
\end{aligned}
$$

It turns out that, not only is this representation valid for a dipole aligned with the z-axis (e.g., $d=d^{\prime} a_{z}$), it is valid for electric dipoles located at the origin, and oriented in any direction!

Although the expression above is valid for any and all dipole moments p, it is valid only for dipoles located at the origin (i.e., $\vec{r}=0$).

Q: Swell. But you have

 neglected one significant detail-what are the fields produced by a dipole when it is NOT located at the origin?A: Finding the solution for this problem is our next task!
Note the electric dipole does not "know" where the origin is, or if it is located there. As far as the dipole is concerned, we do not move it from the origin, but in fact move the origin from it!

In other words, the fields produced by an electric dipole are independent of its location or orientation-it is the mathematics expressing these fields that get modified when we change our origin and coordinate system!

If:

Then:

p

Thus, we simply need to translate the previous field (dipole at the origin) solution by the same distance and direction that we move the dipole from the origin.

Just as with charge, the location of the dipole (center) is denoted by position vector \vec{r}.

Note if the dipole is located at the origin, the position vector \bar{r} extends from the dipole the location where we evaluate the electric field.

However, if the dipole is not located at the origin, this vector extending from the dipole to the electric field is instead $\bar{r}-\bar{r}$. Thus, to translate the solution of the dipole at the origin to a new location, we replace vector \bar{r} with vector $\bar{r}-\bar{r}$, i.e.:

$$
\left.\begin{array}{cc}
r=|\bar{r}| & \text { becomes } \\
\hat{a}_{r}=\frac{\bar{r}}{|\bar{r}|} & \text { becomes }
\end{array} \hat{a}_{R}=\frac{\overline{\mathbf{r}}-\overrightarrow{\mathbf{r}} \mid}{|\bar{r}-\bar{r}|} \right\rvert\,
$$

Thus, a dipole of any arbitrary orientation and location produces the electric potential field:

$$
\begin{aligned}
V(\overline{\mathbf{r}}) & =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{a}_{R}}{|\overline{\mathbf{r}}-\vec{r}|^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot(\overline{\mathbf{r}}-\bar{r})}{|\overline{\mathbf{r}}-\overrightarrow{\mathbf{r}}|^{3}}
\end{aligned}
$$

