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4-6 Voltage and Electric Potential 
 

Reading Assignment: pp. 107-116 
 
 
 

( )
C

r d⋅∫E  

 
 
 

( ) ( ) ( )2 1
C

r d g r g r⋅ = −∫E , where ( ) ( )r g r= ∇E  

 
Q:  
 
 
A:  HO: Voltage and Electric Potential 
 
 
 
 

1. a static electric field ( )rE  (a vector field). 
 

2.    an electrostatic potential field ( )V r  (a scalar 
field!). 
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Q:  
 
 
 
A:   
 
 
 
HO:  Electric Potential for Point Charge 
 
Q:   
  
 
A:   
 
HO:  Electric Potential Function for Charge 
Densities 
 
Example:  The Electric Dipole 
 
Q:   
 
 
A:  HO: The Dipole Moment 
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Voltage and Electric 
Potential 

 
An important application of the line integral is the calculation of 
work.  Say there is some vector field ( )rF that exerts a force 
on some object.  
 

Q:  How much work (W) is done by this vector field if 
the object moves from point Pa to Pb, along contour 
C ?? 

 
A:  We can find out by evaluating the line integral: 
 

( )rab
C

W d= ⋅∫F  

 
 
 
 
 
 

Say this object is a charged particle with charge Q, and the 
force is applied by a static electric field ( )rE .  We know the 
force on the charged particle is: 
 

( ) ( )r rQ=F E  
 

Pa 

Pb 
C 
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and thus the work done by the electric field in moving a 
charged particle along some contour C is: 
 
 

 
( )

( )

r

r

ab
C

C

W d

Q d

= ⋅

= ⋅

∫

∫

F

E
 

 
 
 
 
 

A:  Yes there is! Recall that a static electric field is a 
conservative vector field.  Therefore, we can write any electric 
field as the gradient of a specific scalar field ( )rV : 
 
 

( ) ( )r rV= −∇E  
 
 

We can then evaluate the work integral as: 
 

( )

( )

( ) ( )
( ) ( )

b a

a b

r

r

r r

r r

ab
C

C

W Q d

Q V d

Q V V
Q V V

= ⋅

= − ∇ ⋅

= − −⎡ ⎤⎣ ⎦
= −⎡ ⎤⎣ ⎦

∫

∫

E

 

 

Q: Oooh, I don’t like 
evaluating contour 
integrals; isn’t there 
some easier way? 
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We define: 
 

( ) ( )ab a bV V r V r−  
 
 

Therefore: 
 

ab abW Q V=  
 
 

Q: So what the heck is  Vab  ?  Does it mean any 
thing? Do we use it in engineering? 
 
A:  First, consider what Wab is! 
 

The value Wab represents the work 
done by the electric field on charge 
Q when moving it from point Pa to 
point Pb.  This is precisely the same 
concept as when a gravitational force 
field moves an object from one point 
to another.   
 
The work done by the gravitational 
field in this case is equal to the 
difference in potential energy (P.E.) 
between the object at these two 
points. 

g m=F g . .P E∆
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The value Wab represents the same thing! It is the difference 
in potential energy between the charge at point Pa and at Pb.   
 

Q:  Great, now we know what Wab is. But the question 
was, WHAT IS Vab !?! 
 
A:  That’s easy! Just rearrange the above equation: 
 

ab
ab

WV
Q

=  

See?  The value Vab is equal to the difference in 
potential energy, per coulomb of charge! 
 
*  In other words Vab represents the difference in 
potential energy for each coulomb of charge in Q. 
 
*  Another way to look at it: Vab is the difference in 
potential energy if the particle has a charge of 1 
Coulomb (i.e., Q =1). 
 

Note that Vab can be expressed as: 
 
 

( )

( ) ( )

rab
C

a b

V d

V r V r

= ⋅

= −

∫E
 

 
 
where point Pa lies at the beginning of contour C, and Pb lies at 
the end.
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We refer to the scalar field ( )rV  as the electric potential 
function, or the electric potential field. 
 
We likewise refer to the scalar value Vab as the electric 
potential difference, or simply the potential difference 
between point Pa and point Pb. 
 
Note that Vab (and therefore ( )rV ), has  units of: 
 

Joules   
Coulomb

ab
ab

WV
Q

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 
Joules/Coulomb is a rather awkward unit, so we will use the 
other name for it—VOLTS! 
 
 

1 Joule  1  Volt
Coulomb

 

 
 

Q:  Hey! We used volts in circuits class.  Is  this the 
same thing ? 
 
A:  It is precisely the same thing ! 

 
Perhaps this will help.  Say Pa and Pb are two points somewhere 
on a circuit.  But let’s call these points something different, say 
point + and point - . 



10/26/2004 Voltage and Electric Potential.doc 6/6 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
 
 
 
 
Therefore, V  represents the potential difference (in volts) 
between point (i.e., node) + and point (node) - .  Note this value 
can be either positive or negative. 
 

Q:   But, does this mean that circuits produce electric 
fields? 
 
 

+ - ( )r
C

V d= ⋅∫ E

A:  Absolutely! Anytime 
you can measure a 
voltage (i.e., a potential 
difference) between two 
points, an electric field 
must be present! 
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Electric Potential for  
Point Charge 

 
Recall that a point charge Q, located at the origin (r =0′ ), 
produces a static electric field: 
 

( ) ˆ
2

0

r
4 r

Q a
rπε

=E  

 
Now, we know that this field is the gradient of some scalar 
field: 

( ) ( )r rV= −∇E  
 

 
Q:  What is the electric potential function ( )rV  
generated by a point charge Q, located at the origin? 
 
A:  We find that it is: 
 

( )
0

r
4

QV
rπε

=  

 
 

Q:  Where did this come from ? How do we know that this 
is the correct solution? 
 
A:  We can show it is the correct solution by direct 
substitution! 
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( ) ( )

ˆ

ˆ

0

0

2
0

r r

4

0
4

4

r

r

V
Q

r
Q a

r r
Q a

r

πε

πε

πε

= −∇

⎛ ⎞
= −∇⎜ ⎟

⎝ ⎠
⎛ ⎞∂

= − +⎜ ⎟∂ ⎝ ⎠

=

E

 

 
The correct result!  

 
Q: What if the charge is not located at the origin ? 
 
A:  Substitute r with r-r′ , and we get: 

 
 

( )
0

r
4 r-r

QV
πε

=
′
 

 
 

Where, as before, the position vector r′  denotes the location of 
the charge Q, and the position vector r denotes the location in 
space where the electric potential function is evaluated.  
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The scalar function ( )rV  for a point charge can be shown 
graphically as a contour plot: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Or, in three dimensions as: 
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Note the electric potential increases as we get closer to the 
point charge (located at the origin).  It appears that we have 
“mountain” of electric potential; an appropriate analogy, 
considering that the potential energy of a mass in the Earth’s 
gravitational field increases with altitude (i.e., height)! 
 
Recall the electric field produced by a point charge is a vector 
field that looks like: 
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Combining the electric field plot with the electric potential 
plot, we get: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given our understanding of the gradient, the above plot makes 
perfect sense!  Do you see why ? 
 
Now lets examine another example, where three point charges 
(one of them negative!) are present. 
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Electric Potential Function 
for Charge Densities 

 
Recall the total static electric field produced by 2 different 
charges (or charge densities) is just the vector sum of the 
fields produced by each:  
 

( ) ( ) ( )1 2r r r= +E E E  
 

Since the fields are conservative, we can write this as: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

1 2

1 2

1 2

r r r
r r r
r r r

V V V
V V V

= +

−∇ = −∇ − ∇

−∇ = −∇ +

E E E
 

 
Therefore, we find, 
 

( ) ( ) ( )1 2r r rV V V= +  

In other words, superposition also holds for the electric 
potential function!  The total electric potential field produced 
by a collection of charges is simply the sum of the electric 
potential produced by each. 
 
Consider now some distribution of charge, ( )rvρ .  The amount 
of charge dQ, contained within small volume dv, located at 
position r′ , is: 

( )rvdQ dvρ ′ ′=  
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The electric potential function produced by this charge is 
therefore: 

( )

( )
0

0

r
4 r-r

r
4 r-r

v

dQdV

dv
πε

ρ
πε

=
′

′ ′
=

′

 

 
Therefore, integrating across all the charge in some volume V, 
we get: 
 

( ) ( )
0

rr
4 r-r

v

V
V dvρ

πε
′

′=
′∫∫∫  

 
 

Likewise, for surface  or line charge density: 
 
 

( ) ( )

( ) ( )

0

0

rr
4 r-r

rr
4 r-r

s

S

C

V ds

V d

ρ
πε

ρ
πε

′
′=

′

′
′=

′

∫∫

∫

 

 
 

Note that these integrations are scalar integrations—typically 
they are easier to evaluate than the integrations resulting from  
Coulomb’s Law. 
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Once we find the electric potential function ( )V r , we can then  
determine the total electric field by taking the gradient: 
 

( ) ( )r V r= −∇E  
 

Thus, we now have three (!) potential methods for determining 
the electric field produced by some charge distribution ( )v rρ : 
 

1.  Determine ( )rE  from Coulomb’s Law. 
 
2.  If ( )v rρ  is symmetric, determine ( )rE  from 

Gauss’s Law. 
 
3. Determine the electric potential function ( )V r , and 

then determine the electric field as ( ) ( )r V r= −∇E . 
 
Q:  Yikes! Which of the three should we use?? 
 
A:  To a certain extent, it does not matter!  All three will 
provide the same result (although ( )v rρ  must be symmetric 
to use method 2!).   
 
However, if the charge density is symmetric, we will find 
that using Gauss’s Law (method 2) will typically result in 
much less work! 
 
Otherwise (i.e., for non-symmetric ( )v rρ ),  we find that 
sometimes method 1 is easiest, but in other cases  method 3 
is a bit less stressful (i.e., you decide!).  
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Example: The Electric 
Dipole 

 
Consider two point charges (Q1 and Q2), each with equal 
magnitude but opposite sign, i.e.: 
 

1 2 1 2    and        so   Q Q Q Q Q Q= = − = −  
 

Say these two charges are located on the z-axis, and separated 
by a distance d . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1Q

2Q

z =d/2 

z =-d/2 
The location of charge Q2 = -Q 
is therefore specified by 

position vector 2r 2
ˆ z

d a−′ =  

z =0 

The location of charge Q1 = -Q 
is therefore specified by 

position vector 1r 2 z
d a′

= ˆ  

z  

The Electric Dipole 

1r ′

2r ′
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We call this charge configuration an electric dipole.  Note the 
total charge in a dipole is zero (i.e., 1 2 0Q Q Q Q+ = − = ).  But, 
since the charges are located at different positions, the 
electric field that is created is not zero ! 
 

 
Q:  Just what is the electric field created by an 
electric dipole? 
 
A:  One approach is to use Coulomb’s Law, and 
add the resulting electric vector fields from each 
charge together. 
 
However, let’s try a different approach. Let’s find 
the electric potential field resulting from an 
electric dipole.  We can then take the gradient to 
find the electric field ! 
 

 
Note that this should be relatively straightforward!  We 
already know the electric potential resulting from a single point 
charge—the electric potential resulting from two point charges 
is simply the summation of each: 
 

( ) ( ) ( )1 2r r rV V V= +  
 

where the electric potential ( )1 rV , created by charge Q1, is: 
 

( ) 1
1

0 1 0

r
d4 r r 4 r 2 z

Q QV
aπε πε

= =
− − ˆ
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and electric potential ( )2 rV , created by charge Q2 , is: 
 

( ) 2
2

0 2 0

r
d4 r r 4 r 2 z

Q QV
aπε πε

−
= =

− + ˆ
 

 
Therefore the total electric potential field is: 
 

( )
0 0

0

r
d d4 r 4 r2 2

1 1
d d4 r r2 2

z z

z z

Q QV
a a

Q
a a

πε πε

πε

= −
− +

⎛ ⎞
⎜ ⎟= −⎜ ⎟− +⎜ ⎟
⎝ ⎠

ˆ ˆ

ˆ ˆ

 

 
If the point denoted by r is a significant distance away from 
the electric dipole (i.e., r d>> ), we can use the following 
approximations: 
 

2

2

cos cos1 1 1
d r 2 r r 2rr 2

cos cos1 1 1
d r 2 r r 2rr 2

z

z

d d
a

d d
a

θ θ

θ θ

≈ + = +
−

≈ − = −
+

ˆ

ˆ

 

 
where r and θ  are the spherical coordinate variables of the 
point denoted by r . 
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Therefore, we find: 
 

( )
0

2 2
0

2
0

1 1r
d d4 r r2 2

cos cos1 1
4 r 2r r 2r

cos
4 r

z z

QV
a a

d dQ

dQ

πε

θ θ
πε

θ
πε

⎛ ⎞
⎜ ⎟= −⎜ ⎟− +⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

=

ˆ ˆ

 

 
Note the result.  The electric potential field produced by an 
electric dipole, when centered at the origin and aligned with 
the z-axis is: 
 

( ) 2
0

cosr
4
QdV

r
θ

πε
=  

 
 

Q:   But the original question was, what is the electric 
field produced by an electric dipole? 
 
A:   Easily determined! Just take the gradient of the 
electric potential function, and multiply by -1. 
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( ) ( )

( )

2
0

2 3
0

3 3
0

r r

cos
4

cos1 1cos
4

-2 cos sin
4

r

r

V
Qd

r
Q d dd a a

dr r r d
Q d a a

r r

θ

θ

θ
πε

θ
θ

πε θ

θ θ
πε

= −∇

⎛ ⎞
= −∇ ⎜ ⎟

⎝ ⎠
− ⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− ⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

E

ˆ ˆ

ˆ ˆ

 

 
The static electric field produced by an electric dipole, when 
centered at the origin and aligned with the z-axis is: 
 
  

( ) 3
0

1r 2cos sin
4

ˆ ˆr
Qd a a

r θθ θ
πε

= +⎡ ⎤⎣ ⎦E  

 
 

Yikes! Contrast this with the electric field of a single point 
charge.  The electric dipole produces an electric field that: 
 

1)  Is proportional to r-3 (as opposed to r-2). 
 
2)  Has vector components in both the ˆ ra and âθ  directions 
(as opposed to just ˆ ra ).   
 
In other words, the electric field does not point away from 
the electric dipole! 
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The electric potential produced by an electric dipole looks like: 
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And the electric field produced by the electric dipole is: 
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The Dipole Moment 
 
Note that the dipole solutions: 
 

( ) 2
0

cosr
4
QdV

r
θ

πε
=  

and  
 

( ) 3
0

1r 2cos sin
4

ˆ ˆr
Qd a a

r θθ θ
πε

= +⎡ ⎤⎣ ⎦E  

 
provide the fields produced by an electric dipole that is: 
 

1. Centered at the origin. 
 
2. Aligned with the z-axis. 
 

 
 
 
 
 
 
 

 
 
A:  That is indeed correct!  The expressions above are only 
valid for a dipole centered at the origin and aligned with the z-
axis. 
 

Q:  Well isn’t that just grand.  
I suppose these equations are 
thus completely useless if the 
dipole is not centered at the 
origin and/or is not aligned 
with the z-axis !*!@! 
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To determine the fields produced by a more general case (i.e., 
arbitrary location and alignment), we first need to define a new 
quantity p, called the dipole moment: 
 

Q=p d  
 

Note the dipole moment is a vector quantity, as the d is a vector 
quantity. 
 

Q:  But what the heck is vector d  ?? 
 
A:  Vector d is a directed distance that extends from the 
location of the negative charge, to the location of the 
positive charge.   This directed distance vector d thus 
describes the distance between the dipole charges (vector 
magnitude), as well as the orientation of the charges 
(vector direction). 
 

 

Therefore d̂a=d d , where: 
 

  between chargesd=d distance  
 
and 
 

da   the  of the dipole= orientationˆ  

Q

Q−

d 
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Note if the dipole is aligned with the z-axis, we find that 
ẑd a=d  .  Thus, since ˆ ˆ cosz ra a θ⋅ = , we can write the 

expression: 
cos z r

r

r

Qd Q d a a
Q a

a

θ = ⋅

= ⋅

= ⋅

d
p

ˆ ˆ
ˆ

ˆ
 

 
Therefore, the electric potential field created by a dipole 
centered at the origin and aligned with the z-axis can be 
rewritten in terms of its dipole moment p: 
 

( ) 2
0

2
0

cosr
4

1
4

r

QdV
r

a
r

θ
πε

πε

=

⋅
=

p ˆ
 

 
It turns out that, not only is this representation valid for a 
dipole aligned with the z-axis (e.g., ˆ zd a=d ), it is valid for 
electric dipoles located at the origin, and oriented in any 
direction! 
 

( ) 2
0

1r
4

raV
rπε
⋅

=
p ˆ  

 
 
Although the expression above is valid for any and all dipole 
moments p, it is valid only for dipoles located at the origin (i.e., 
r 0′ = ).   
 

Q

Q−

d 

origin 
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A: Finding the solution for this problem is our next task!  
 
Note the electric dipole does not “know” where the origin is, or 
if it is located there.  As far as the dipole is concerned, we do 
not move it from the origin, but in fact move the origin from it! 
 
 
 
 
 
 
 
 
 
 
In other words, the fields produced by an electric dipole are 
independent of its location or orientation—it is the mathematics 
expressing these fields that get modified when we change our 
origin and coordinate system! 
 
 

Q:  Swell.  But you have 
neglected one significant 
detail—what are the fields 
produced by a dipole when it 
is  NOT located at the origin?

x 

y 

z 

p 

x 

y 

z 
p 



10/26/2004 The Dipole Moment.doc 5/6 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
 
 
 
 
 
Thus, we simply need to translate the previous field  (dipole at 
the origin) solution by the same distance and direction that we 
move the dipole from the origin. 
 
 
 
 
 
 
 
 
 
 
Just as with charge, the location of the dipole (center) is 
denoted by position vector r′ .  
 
Note if the dipole is located at the origin, the position vector r  
extends from the dipole the location where we evaluate the 
electric field. 
 
However, if the dipole is not located at the origin, this vector 
extending from the dipole to the electric field  is instead r r′− .  
Thus, to translate the solution of the dipole at the origin to a 
new location, we replace vector r  with vector r r′− , i.e.: 

E 

p 
E 

p 
If: Then: 

x 

y 

z 

p 

( )rE
r

x 

y 

z p 

( )rE

r

r′

r r′−
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     rr =              becomes                r r′−  
 
 

      rˆ
rra =               becomes            r rˆ

r rRa ′−
=

′−
 

 
 

       ( ) 2
0

1r
4

raV
rπε
⋅

=
p ˆ     becomes    ( ) 3

0

(r-r )1r
4 r-r

V
πε

′⋅
=

′
p   

 
 
 

Thus, a dipole of any arbitrary orientation and location 
produces the electric potential field: 
 
 
 

( ) 2
0

3
0

1r
4 r-r

(r-r )1
4 r-r

ˆ RaV
πε

πε

⋅
=

′

′⋅
=

′

p

p
 

 
 

 


