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7-4 Field Calculations 
Using Ampere’s Law 

 
Q: Using the Biot-Savart Law is even more difficult 
than  using Coloumb’s law.  Is there an easier way? 
 
A:   
 
 
 
HO: B-field from Cylindrically Symmeteric Current 
Distributions 
 
Example: A Hollow Tube of Current 
 
Example: The B-field of a Coaxial Transmission Line 
 
 
 
 
 
HO: Solenoids 
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B-Field from Cylindrically 
Symmetric Current 

Distributions 
 
Recall we discussed cylindrically symmetric charge distributions 
in Section 4-5.  We found that a cylindrically symmetric charge 
distribution is a function of coordinate ρ  only 
(i.e., ( ) ( )rv vρ ρ ρ= ). 
 
Similarly, we can define a cylindrically symmetric current 
distribution.  A current density ( )rJ  is said to be cylindrically 
symmetric if it points in the direction ˆ za  and is a function of 
coordinate ρ  only: 
 

( ) ( )r ˆz zJ aρ=J  
 
In other words, 0J Jρ φ= = , and zJ  is independent of both 
coordinates  and z φ . 
 
We find that a cylindrically symmetric current density will 
always produce a magnetic flux density of the form: 
 
 

( ) ( ) ˆr B a=B φ φρ  
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In other words, 0zB Bρ = = , and Bφ  is independent of both 
coordinates z and φ . 
 
Now, lets apply these results to the integral form of Ampere’s 
Law: 

( ) ( ) 0  r ˆ enc
C C

d B a d Iφ φρ µ⋅ = ⋅ =∫ ∫B
 

where you will recall that Ienc is the total current flowing 
through the aperture formed by contour C: 
 
 
 
 
 
 
 
 
 
 
Say we choose for contour C a circle, centered around the z-
axis, with radius ρ . 
 
 
 
 
 
 
 

C Ienc 

C 
ρ  

z 

ˆd a dφ ρ φ=  

Amperian Path for 
Cylindrically 
Symmetric Current 
Distributions 
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This is a special contour, called the Amperian Path for 
cylindrically symmetric current densities.  To see why it is 
special, let us use it in the cylindrically symmetric form of 
Ampere’s Law: 

( )

( )

( )

( )

0
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0
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∫
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∫

 

 
From this result, we can conclude that: 
 
 

( ) 0

2
encIBφ

µ
ρ

πρ
=  

 
 

Q:  But what is Ienc ? 
 
A:  The current flowing through the circular aperture 
formed by contour C ! 
 

We of course can determine this by integrating the current 
density ( )rJ  across the surface of this circular aperture 
( ˆ zds a d dρ ρ φ= ): 
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( )

( )

( )
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2

ˆ ˆ
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Combining these results, we find that the magnetic flux density 
( )rB  created by a cylindrically symmetric current density ( )rJ  

is: 
 

( )

( )

0

0

0

r
2

ˆ

ˆ

enc
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I a

a J d

φ

ρ
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µ
πρ
µ

ρ ρ ρ
ρ
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′ ′ ′= ∫

B
 

 
 
 

For example, consider again a wire with current I flowing along 
the z-axis.  This is a cylindrically symmetric current, and the 
total current enclosed by an Amperian path is clearly I for all ρ  
(i.e., Ienc =I ).   
 
From the expression above, the magnetic flux density ( )rB  is 
therefore: 

( ) 0r
2

ˆ
I aφ

µ
π ρ

=B  

 
The same result as determined by the Biot-Savart Law! 
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Example: A Hollow  
Tube of Current 

 
Consider a hollow cylinder of uniform current, flowing in the ẑa  
direction: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The inner surface of the 
hollow cylinder has 
radius b, while the outer 
surface has radius c.  

ẑa  

( ) 0 ˆr zJ a=J  

x 
b 

c 

y 
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The current density in the hollow cylinder is uniform, thus we 
can express current density ( )rJ  as:  

 

( ) 20

0

r ˆ

0

z

b

Ampsb cJ a m

c

ρ

ρ

ρ

⎧ <
⎪
⎪⎪ ⎡ ⎤< <= ⎨ ⎢ ⎥⎣ ⎦⎪
⎪

>⎪⎩

J  

 
Q: What magnetic flux density ( )rB  is produced by this 
current density ( )rJ ? 
 
A: We could use the Biot-Savart Law to determine ( )rB , 
but note that ( )rJ  is cylindrically symmetric! 
 

In other words, current density ( )rJ  has the form: 
 

( ) ˆr ( )z zJ aρ=J  
 
 
 
 
 
 
 
 
 

 

The current is cylindrically 
symmetric! I suggest you 
use my law to determine 
the resulting magnetic flux 
density. 
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Recall using Ampere’s Law, we determined that cylindrically 
symmetric current densities produce magnetic flux densities of 
the form: 
 

( )

( )

0

0

0

r
2

ˆ

ˆ

enc

z

I a

a J d

φ

ρ

φ

µ
πρ
µ

ρ ρ ρ
ρ

=

′ ′ ′= ∫

B
 

 
Therefore, we must evaluate the integral for the current 
density in this case.  Because of the piecewise nature of the 
current density, we must evaluate the integral for three 
different cases: 
 

1)  when the radius of the Amperian path is less than b (i.e., 
bρ < ). 

 
2)  when the radius of the Amperian path is greater than b 
but less than c (i.e.,  b cρ< < ). 
 
3)  when the radius of the Amperian path is greater than c. 

 
b<ρ  

 
Note for bρ < , ( )r 0=J  and therefore the integral is zero: 
 

( )
0 0

0 0zJ d d
ρ ρ

ρ ρ ρ ρ ρ′ ′ ′ ′ ′= =∫ ∫  
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and therefore: 
 

( ) ˆ 0r 0

0              for    

a

b

=

= <

B φ
µ
ρ

ρ
 

 
Thus, the magnetic flux density in the hollow region of the 
cylinder is zero! 
 
b c< <ρ  
 
Note for b cρ< < , ( ) 0 ˆr zJ a=J   (i.e., 0( )zJ Jρ = ) and 
therefore: 
 

( ) ( ) ( )
0 0

0
0

0

2 2

0

2 2
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0

0

2 2

2

b

z z z
b

b

b

b
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d J d

J d
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ρ
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ρ
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⎝ ⎠
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∫ ∫

∫  
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and therefore the magnetic flux density in the non-hollow 
portion of the cylinder is: 
 

( )
2 2

0
0r          for    

2
ba J b cφ

µ ρ ρ
ρ

⎛ ⎞−
= < <⎜ ⎟

⎝ ⎠
B ˆ  

 
c>ρ  

 
Note that outside the cylinder  (i.e., cρ > ), the current density 
( )rJ  is again zero, and therefore: 
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0
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b
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∫ ∫ ∫

∫

 
Thus, the magnetic flux density outside the current cylinder is:  
 

( )
2 2

0
0r          for    

2
c ba J cφ

µ
ρ

ρ
⎛ ⎞−

= >⎜ ⎟
⎝ ⎠

B ˆ  
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Summarizing, we find that the magnetic flux density produced 
by this hollow tube of current is: 
 
 

( )
2 2

0 0
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b

J b Webersa b c
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We can find an alternative expression by determining the total 
current flowing through this cylinder (let’s call this current I0).  
We of course can determine I0 by performing the surface 
integral of the current density ( )rJ  across the cross sectional 
surface S of the cylinder: 
 

( )
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0
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Therefore, we can conclude that: 
 

( )
0

0 2 2

IJ
c bπ

=
−

 

Inserting this into the expression for the magnetic flux 
density, we find: 
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Note the field outside of the cylinder ( cρ > ) behaves precisely 
as would the field from a wire of current I0 ! 
 

 
            b                    c                                                         ρ 

 
|B| 
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Example: The B-Field of 
Coaxial Transmission Line 

 
Consider now a coaxial cable, with inner radius a : 
 

ẑa  

I0 
I0 

a 

b 

c 

The outer surface of the 
inner conductor has radius a, 
the inner surface of the 
outer conductor has radius 
b, and the outer radius of 
the outer conductor has 
radius c. 
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Typically, the current flowing on the inner conductor is equal 
but opposite that flowing in the outer conductor.  Thus, if 
current I0 is flowing in the inner conductor in the direction ẑa , 
then current I0 will be flowing in the outer conductor in the 
opposite (i.e., ẑa− ) direction. 
 

Q:  Hey! If there is current, a magnetic flux density must 
be created.  What is the vector field ( )rB ?  
 
A:  We’ve already determined this (sort of) ! 
 

Recall we found the magnetic flux density produced by a hollow 
cylinder—we can use this to determine the magnetic flux 
density  in a coaxial transmission line. 
 

A coaxial cable can be viewed as two hollow cylinders! 
 
 

 
 
 
 
 
 

 

Q: I find it necessary to 
point out that you are 
indeed wrong—the inner 
conductor is not hollow! 

A: Mathematically, we can view 
the inner conductor as a hollow 
cylinder with an outer radius a 
and an inner radius of zero!   
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Thus, we can use the results of the previous handout to 
conclude that the magnetic flux density produced by the 
current flowing in the inner conductor is: 
 
 

( )
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Likewise, we can use the same result to determine the magnetic 
flux density of the current flowing in the outer conductor: 
 

( )
2 2
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2 2 2
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0
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2

ˆ
2
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b
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⎪
⎪

−⎪ >⎪⎩

B  

 
Note the minus sign is due to direction of the current  ( ẑa− ) in 
the outer conductor. 
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We can now apply superposition to determine the total magnetic 
flux density in a coaxial transmission line!  Specifically: 
 

if       ( ) ( ) ( )r r rinner outer= +J J J  
 

then    ( ) ( ) ( )r r routerinner= +B B B  
 

Note due to the piecewise nature of these solutions, we must 
evaluate this sum for 4 distinct regions: 
 

1)  aρ <   (in the inner conductor) 
 
2)  a bρ< <   (in the region between the conductors) 
 
3)  b cρ< <   (in the outer conductor) 
 
4)  cρ >   (outside the coaxial cable) 
 
 

aρ <  
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ˆ
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a bρ< <  
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b cρ< <  
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Summarizing, we find the total magnetic flux density to be: 
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The magnetic flux density and the electric field outside of a 
coaxial transmission line are zero! 

             a                        b           c              ρ 

( )ρB  
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Solenoids 
 
An important structure in electrical and computer engineering is 
the solenoid. 
 
A solenoid is a tube of current.  However, it is different from 
the hollow cylinder example, in that the current flows around 
the tube, rather than down the tube: 
 
 
 
 
 
 
 
 
 
Aligning the center of the tube with the z-axis, we can express 
the current density as: 
 

( )

0

ˆ

0

s s

a

Ampsr J a a
m

a

φ

ρ

ρ

ρ

<⎧
⎪
⎪⎪ ⎡ ⎤= =⎨ ⎢ ⎥⎣ ⎦⎪
⎪

>⎪⎩

J  

 
where a is the radius of the solenoid, and Js is the surface 
current density in Amps/meter. 

( )rsJ  
a 
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We can use Ampere’s Law to find the magnetic flux density 
resulting from this structure.  The result is: 
 

( )
0 ˆ

0

s zJ a a
r

a

µ ρ

ρ

⎧ <
⎪= ⎨
⎪ >⎩

B  

 
Note the direction of the magnetic flux density is in the 
direction ẑa --it points down the center of the solenoid. 
 
Note also that the magnitude ( )rB  is independent of solenoid 
radius a ! 
 
 
 
 
 
 
 
A:  We can easily make a 
solenoid by forming a wire spiral 
around a cylinder. 
 

 

Q: Yeah right! How are we 
supposed to get current to 
flow around this tube? I 
don’t see how this is even 
possible. 

B

N  turns

leakage flux lines

I

L 
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The surface current density Js of this solenoid is approximately 
equal to: 

s
N IJ N I

L
= =  

 
where N N L=  is the number of turns/unit length.  Inserting 
this result into our expression for magnetic flux density, we 
find the magnetic flux density inside a solenoid: 
 
 
 

( ) 0

0

ˆ

ˆ

z

z

N Ir a
L

N I a

µ

µ

=

=

B
 

 


