
11/28/2004 section 8_3 Magnetic Materials blank 1/2 

Jim Stiles The Univ. of Kansas Dept. of EECS 

8-3 Magnetic Materials 
 
Reading Assignment: pp. 244 - 260 
 
Recall in dielectrics, electric dipoles were created 
when and E-field was applied. 
 

 Therefore, we defined permittivity ε , electric 
flux density ( )rD , and a new set of electrostatic 
equations. 

 
Q:   
 
A:   
 
8-3-1  Orbital and Spin Currents 
 
HO: Magnetic Materials 
 
HO: The Magnetic Dipole in a B-field 
 
8-3-2  Magnetic Susceptibility and 
Magnetization Currents 
 
HO: The Magnetization Vector 
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HO: Magnetization Currents 
 
8-3-3  The Magnetic Field Intensity 
 
HO: The Magnetic Field 
 
Example: Magnetization Currents 
 
8-3-4 The Physical Properties of Magnetic 
Materials  
 
HO: Permanent Magnents 
 
8-3-5 Field Equations in Magnetic Materials 
 
HO: Field Equations in Magnetic Materials 
 
8-3-6 Magnetic Field Boundary Conditions 
 
HO: Magnetic Boundary Conditions 
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Magnetic Materials 
 
Recall that atoms and molecules, having both positive (i.e., 
protons) and negative (i.e., electron) charged particles can form 
electric dipoles. 
 
We find that atoms and molecules also can also form magnetic 
dipoles! 
 

Q:  How?? 
 
A:  Recall a magnetic dipole is formed when current 
flows in a small loop.  Current, of course, is moving 
charge, therefore charge moving around a small loop 
forms a magnetic dipole.  
 
Molecules and atoms often exhibit electrons moving 
around in small loops! 
 

Again, we use our ridiculously simple model of an atom: 
 

+ 

- 

- 

+ 

=  electron  
    (negative charge) 

=  nucleus 
    (positive charge) 
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An electron with charge Q orbiting around a nucleus at velocity 
u forms a small current loop, where I Q= u . 
 
This forms a magnetic dipole! 
 
This is a very simple atomic explanation of how magnetic dipoles 
are formed in material.  In actuality, the physical mechanisms  
that lead to magnetic dipoles can be far more complex.  For 
example, electron spin can also create a magnetic dipole 
moment. 
 
Typically, the atoms/molecules of materials exhibit either no 
magnetic dipole moment (i.e., 0=m ), or the dipole moments of 
each atom/molecule are randomly oriented, such that the net 
dipole moment is zero. 
 
   
 

+ 

- 
u 

Q 

+ 

I 
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Therefore, if we have N randomly oriented magnetic dipoles nm , 
we find there average value will be zero: 
 

1 0n
nN

=∑m  

 
Similarly, we find that the total magnetic flux density created 
by these magnetic dipoles is also zero: 
 

( ) 0n
n

r =∑B  

 
However, we find that sometimes the magnetic dipole moment 
of each atom/molecule is not randomly oriented, but in fact are 
aligned! 
 
 

 
 
 
 
 
 

In this case, total magnetic flux density created by these 
dipoles is non-zero! 

( ) 0n
n

r ≠∑B . 
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Q:  Why would these magnetic dipoles be aligned? 
 
A:  Two possible reasons: 
 
 1)  the material is a permanent magnet. 
 

2)  the material is immersed in some 
magnetizing field ( )m rB . 
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The Magnetic Dipole  
in a B-field 

 
Consider the case of an arbitrarily aligned magnetic dipole: 
 
 
 
 
 
 
 
 
Say this dipole is immersed in some field ( )m rB : 
 
 
 
 
 
 
 
 
 
 
 
 

m 

I 

m 

I 

( )m rB
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Q: What happens to a magnetic dipole when 
exposed to a magnetic flux density ( )m rB ? 
 
A:  Exactly what the Lorentz Force equation says 
will happen! 

 
Recall that the force dFon some current element I d  is: 
 

( )x mI d r=dF B  
 

Note this force is therefore perpendicular to both ( )rB  and 
current I. 
 
 
 
 
 
 
 
 
 
 
 
The total resultant force on a current loop is will be zero, so 
the dipole does not change position.  I.E.: 
 

( )x 0m
C

I d r =∫ B  

m 

I 

( )m rB

dF  

dF
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However, the forces on the current do apply a torque mT to the 
current loop! 
 
The current loop (i.e., magnetic dipole) will rotate until the 
dipole moment m is aligned with the magnetic flux density 
vector ( )m rB . 
 
 
 
 
 
 
 
 
 
 
 
For a circular current loop, it can be shown (pp. 234-235) that 
the torque applied is: 
 
 

( ) [ ]xm r N m= ⋅T m B  
 

 
Note that once the magnetic dipole moment m is aligned with 
magnetic flux density ( )rB , the torque mT is equal to zero—the 
magnetic dipole stops rotating and remains aligned with ( )rB . 

m 

I 

( )m rB

dF  dF  
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The Magnetization Vector 
 
Recall that we defined the Polarization vector of a dielectric 
material as the electric dipole density, i.e.: 
 

( )
0

electric dipole momentr lim       
unit volume

n

v v∆ →

⎡ ⎤
⎢ ⎥∆ ⎣ ⎦

∑p
P  

 
Similarly, we can define a Magnetization vector ( )rM of a 
material to be the density of magnetic dipole moments at 
location r : 
 
 

( )
0

magnetic dipole momentr lim       
unit volume

n

v

A
v m∆ →

⎡ ⎤=⎢ ⎥∆ ⎣ ⎦
∑m

M  

 
 

 
Note if the dipole moments of atoms/molecules within a 
material are completely random, the Magnetization vector will 
be zero (i.e., ( ) 0r =M ). 
 
However, if the dipoles are aligned, the Magnetization vector 
will be non-zero (i.e., ( ) 0r ≠M ) 

 



11/28/2004 The Magnetization Vector 2/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Recall a magnetic dipole will create a magnetic vector potential 
equal to: 
 

( ) ( )0
3

x r r
4 r-r

-r µ
π

′
=

′
mA  

 
Since the magnetic dipole moment of some small (i.e., 
differential) volume dv of the material is: 
 

( )r dv=m M  
 

we find that the magnetic vector potential created by a volume 
V of material with magnetization vector ( )rM is: 
 
 

                                         ( ) ( ) ( )0
3

x r r
4 r-rV

r -r dvµ
π

′ ′
′=

′∫∫∫
MA  

 
 
 
 
 
 
 
 
 
 
 

 
A:  Relax, both expressions are correct! 

 

Q: This is freaking me out!! I thought that currents ( )rJ  
were responsible for creating  magnetic vector potential.  
In fact, I could have sworn that: 

( ) ( )0 rr
4 r rV

dvµ
π

′
′=

′−∫∫∫
JA  
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Recall that we could attribute the electric field created by  
Polarization Vector ( )rP  to polarization (i.e., bound) charges 

( )vp rρ  and ( )sp rρ , i.e., : 
 

( ) ( )r rvpρ = −∇ ⋅P              ( ) ( )r r ˆsp naρ = ⋅P  
 
Similarly, we can attribute the magnetic vector potential (and 
therefore the magnetic flux density) created by Magnetization 
Vector ( )rM  to Magnetization Currents ( )m rJ  and ( )sm rJ . 
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Magnetization Currents 
 
Recall that the magnetic vector potential ( )rA  created by 
volume current distribution ( )rJ is: 
 

( ) ( )0 rr
4 r rV

dvµ
π

′
′=

′−∫∫∫
JA  

 
while the magnetic vector potential  created by a surface 
current ( )s rJ : 

( ) ( )0 rr
4 r r

s

S
dsµ

π
′

′=
′−∫∫

JA  

 
Therefore, if both volume and surface current densities are 
present we find that the total magnetic vector potential is: 
 

( ) ( ) ( )0 0r r
r

4 r r 4 r r
s

V S

dv dsµ µ
π π

′ ′
′ ′= +

′ ′− −∫∫∫ ∫∫
J J

A  

 
Compare these expressions to the magnetic vector potential 
field produced by material with Magnetization Vector ( )rM : 
 

( ) ( ) ( )0
3

x r r
4 r-rV

r -r dvµ
π

′ ′
′=

′∫∫∫
MA  

 
We can write also write this expression as (trust me!): 
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( ) ( ) ( ) ˆn0 0x r r xa
r

4 r r 4 r rV S

dv dsµ µ
π π

′ ′ ′∇
′ ′= +

′ ′− −∫∫∫ ∫∫
M M

A  

 
where surface S is the closed surface that surrounds material 
volume V, and unit vector n̂a  is normal to this surface. 
 
We find that this is identical to the expression: 
 

( ) ( ) ( )0 0r r
r

4 r r 4 r r
s

V S

dv dsµ µ
π π

′ ′
′ ′= +

′ ′− −∫∫∫ ∫∫
J J

A  

 
if ( ) ( )xr r= ∇J M  and ( ) ( )xs n̂r r a=J M . 
 
Therefore, we find that the magnetization of some material,  as 
described by magnetization vector ( )rM , creates effective 
currents ( )m rJ  and ( )sm srJ  (where sr  indicates points on the 
material surface) .  We call these effective currents 
magnetization currents: 
 
 

( ) ( )

( ) ( )

2x

x a

m

sm s s n

Ar r
m

Aˆr r
m

⎡ ⎤= ∇ ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

J M

J M

 

 
 
Again, note the analogy of these magnetization currents with 
polarization charges ( ) ( ) and vp spr rρ ρ . 
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The Magnetic Field  
 
Now that we have defined magnetization current, we find that 
Ampere’s Law for fields within some material becomes: 
 

( ) ( ) ( )( )
( ) ( )( )

0

0

x

x
mr r r

r r
µ

µ

∇ = +

= + ∇

B J J

J M
 

 
This of course is analogous to the expression we derived for 
Gauss’s Law in a dielectric media: 
 

( )
( ) ( ) ( ) ( )

0 0

v vp vr r r rr
ρ ρ ρ

ε ε
+ − ∇ ⋅

∇ ⋅ = =
PE  

 
Recall that we removed the polarization charge from this 
expression by defining a new vector field ( )rD , leaving us with 
the more general expression of Gauss’s Law: 
 

( ) ( )vr rρ∇ ⋅ =D  
 
 

 
 

 
 
 
A:  Yes! We call this vector field 
the magnetic field ( )rH . 

Q:  Can we similarly define 
a new vector field to “take 
care” of magnetization 
current ?? 
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Let’s begin by rewriting Ampere’s Law as: 
 

( ) ( ) ( )0 0x mr r rµ µ∇ − =B J J  
 

Yuck! Now we see clearly the problem.  In free space, if we 
know current distribution ( )rJ , we can find the resulting 
magnetic flux density ( )rB  using the Biot-Savart Law: 
 

( ) ( ) ( )0
3

r x r rr
4 r rV

dvµ
π

′ ′−
′=

′−∫∫∫
JB  

 
But this is the solution for current in free space! It is no 
longer valid if some material is present! 
 

Q:  Why? 
 
A:  Because, the magnetic flux density produced by 
current ( )rJ  may magnetize the material (i.e., produce 
magnetic dipoles), thus producing magnetization currents 

( )m rJ  .   
 

These magnetization currents ( )m rJ  will also produce a 
magnetic flux density—a  modification of vector field ( )rB that 
is  not accounted for in the Biot-Savart expression shown 
above! 
 
To determine the correct solution, we first recall that: 
 

( ) ( )xm r r= ∇J M  
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Therefore Ampere’s Law is: 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0

x x

x

x

r r r

r r r

r r r

µ µ

µ µ

µ

∇ − ∇ =

∇ − =⎡ ⎤⎣ ⎦

⎡ ⎤
∇ − =⎢ ⎥

⎣ ⎦

B M J

B M J

B M J

 

 
Now let’s define a new vector field ( )rH , called the magnetic 
field: 
 

( ) ( ) ( )
0

r Ampsr r
meterµ
⎡ ⎤− ⎢ ⎥⎣ ⎦

BH M  

 
 

Ampere’s Law therefore can be written in terms of the 
magnetic field as: 
 
 

( ) ( )x r r∇ =H J  
 

 
Hey! We know what the solution to this differential equation is!  
Recall the solution to: 
 

( ) ( )0x r rµ∇ =B J  
 
is the Biot-Savart Law. 
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If we make the substitution: 
 

( ) ( )
0

rr
µ

↔
BH  

we find that both differential equations are identical.  
Therefore their solutions are also identical when making the 
same substitution.   
 
Making this substitution into the Biot-Sarvart Law, we find 
that: 
 
 

( ) ( ) ( )
3

r x r r1r
4 r rV

dv
π

′ ′−
′=

′−∫∫∫
J

H  

 
 
 
 

 
 
 
 
 
 
 
 
 

Q:  Swell.  But may I remind 
you that we were suppose to 
be finding the solution for 
the &%^@!+*#& magnetic 
flux density ( )rB ! 
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True! But since we can find ( )rH  from ( )rJ , our task now is to 
determine the relationship between ( ) ( ) and r rB H . 
 
We call the relationship between ( ) ( ) and r rB H  a constitutive 
equation.  For most media, we find that the magnetization 
vector ( )rM  is directly proportional to the magnetic field 
( )rH : 

( ) ( )mr rχ=M H  
 

where the proportionality coefficient mχ  is the magnetic 
susceptibility of the material.   
 

*  Note that for a given magnetic field ( )rH , as mχ  
increases, the magnetization vector ( )rM  increases.  
  
*  Magnetic susceptibility mχ  therefore indicates how 
susceptible the material is to magnetization.   
 
*  In other words, mχ  is a measure of how easily (or 
difficult) it is to create and align magnetic dipoles 
(from atoms/molecules) within the material.  

 
Again, note the analogy to electrostatics.  We defined earlier 
electric susceptibility eχ , which indicates how susceptible a 
material is to polarization (i.e., the creation of electric dipoles). 
 
We can now determine the relationship between 
( ) ( ) and r rB H .  Using the above expression, we find: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0 1

m

m

m

rr r

rr r

rr r

r r

µ

χ
µ

χ
µ

µ χ

= −

= −

+ =

+ =

BH M

BH H

BH H

H B

 

 
Hey! Magnetic field ( )rH  and magnetic flux density are related 
by a simple constant! 
 
 

( ) ( )r r=B Hµ  
 
 

where: 
 
 

( )

2

0

 material 

1 m

N Henries
A m

µ

µ χ

⎡ ⎤=⎢ ⎥⎣ ⎦

= +

permeability
 

 
 
 

We typically further simplify this expression by defining a 
relative permeability: 
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relative permeability
1

r

m

µ
χ= +

 

 
 

So that: 
( ) ( ) ( )0 rr r rµ µ µ= =B H H  

 
In other words, if the relative permeability of some material 
was, say, 2rµ = , then the permeability of the material is twice 
that of the permeability of free space (i.e., 02µ µ= ).  This 
perhaps is more readily evident when we write: 
 

0
r

µµ
µ

=  

 
Note that  and/or rµ µ  are proportional to magnetic 
susceptibility mχ .  As a result, permeability is likewise an 
indication of how susceptible a material to magnetization.   
 

*  If 1rµ = , this susceptibility is that of free space 
(i.e., none!).   
 
*  Alternatively, a large rµ  indicates a material that is 
easily magnetized. 
 
*  For example, the relative permeability of iron is 

rµ =4000 ! 
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Now, we are finally able to determine the magnetic flux 
density in some material, produced by current density ( )rJ ! 
 
Since ( ) ( )r rµ=B H  and: 
 

( ) ( ) ( )
3

r x r r1r
4 r rV

dv
π

′ ′−
′=

′−∫∫∫
J

H  

 
we find the desired solution: 
 
 

( ) ( ) ( )
3

r x r r
4 r rV

r dvµ
π

′ ′−
′=

′−∫∫∫
J

B  

 
 

 
Comparing this result with the Biot-
Sarvart Law for free space, we see 
that the only difference is that 0µ has 
been replaced withµ !   
 
This last result is therefore is a more general form of the Biot-
Savart Law, giving the correct result for fields within some 
material with permeability µ .  Of course, the “material” could 
be free space. However, the expression above will still provide 
the correct answer; because for free space 0µ µ= , thus 
returning the equation to its original (i.e., free space) form! 

   

  ??? 
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Summarizing, we can attribute the existence of a magnetic 
field ( )rH  to conduction current ( )rJ , while we attribute the 
existence of magnetic flux density to the total current 
density, including the magnetization current. 
 
 

( ) ( )

( ) ( ) ( )m

r r

r r r+

⇒

⇒

J H

J J B
 

 
 

Finally, we again want to note the analogies between 
electrostatics and the magnetostatic expressions derived in 
this handout: 
  

( ) ( ) ( ) ( ) ( ) ( )0 0 0r r r r r rµ µ ε= + =⇔ +B H M D E P  
 

( ) ( ) ( ) ( ) ( ) ( )0 01 1m er r r rµ χ ε χ⇔= + = +B H D E  
 

( ) ( ) ( ) ( )r r r rµ ε⇔= =B H D E  
 

( ) ( )r r⇔B D  
 

( ) ( )r r⇔H E  
 

( ) ( )r r⇔M P  
 

m eχ χ⇔  
 

µ ε⇔  
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Example: Magnetization 
Currents 

Problem: 
 
Consider an infinite cylinder made of magnetic material.  This 
cylinder is centered along the z-axis, has a radius of 2 m, and 
a permeability of 04µ . 
 
Inside the cylinder there exists a magnetic flux density: 
 

( ) ( )08 1ˆr φ
µ ρ
ρ

= ≤B α  

 
Determine the magnetization current ( )sm srJ  flowing on the 
surface of this cylinder, as well as the magnetization current 

( )m rJ  flowing within the volume of this cylinder. 
 
Solution: 
 
First, we note that we must know the magnetization vector 

( )rM  in order to find the magnetization currents: 
 

( ) ( )

( ) ( )

2x

x a

m

sm s s n

Ar r
m

Aˆr r
m

⎡ ⎤= ∇ ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

J M

J M
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But, we must know the magnetic susceptibility mχ  and the 
magnetic field ( )rH  to determine magnetization vector. 
 

( ) ( )mr rχ=M H  
 

Likewise, we need to know the relative permeability rµ  to 
determine magnetic susceptibility: 
 

1m rχ µ= −  
 
and we need to know the magnetic flux density ( )rB  to 
determine the magnetic field: 
 

( ) ( )rr
µ

=
BH  

 
But guess what! We know the relative permeability rµ  of the 
material, as well as the magnetic flux density within it! 
 

04 4r,µ µ µ= ∴ =  
 

( ) ( )08 1ˆr φ
µ ρ
ρ

= ≤B α  

 
Therefore, the magnetic field is: 
 

( ) ( ) 0

0

81 2
4

r ˆ ˆr φ φ
µ

µ µ ρ ρ
= = =
BH α α  
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and the magnetic susceptibility is: 
 

1 4 1 3m rχ µ= − = − =  
 
So the magnetization vector is: 
 

( ) ( ) ( ) 2 63m ˆ ˆr r φ φχ
ρ ρ

= = =M H α α  

 
Now (finally!) we can determine the magnetization currents: 
 
 

( ) ( )x
6x

0

m r r

ˆ φρ

= ∇

⎛ ⎞
= ∇ ⎜ ⎟

⎝ ⎠
=

J M

α  

 
The volume magnetization current density is zero—there is no 
magnetization current flowing within the cylinder! 
 
 
 

 

Q:  No magnetization currents! 
So we’re done right? This 
problem is solved? 
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A:  Not hardly! Although there are no magnetization currents 
flowing within the cylinder, there might be magnetization 
currents flowing on the cylinder surface (i.e., ( )sm srJ ) ! 
 

( ) ( )x asm s s nˆr r=J M  
 
Note for this problem, the unit vector normal to the surface 
of the cylinder is nˆ ˆ ρ=α α . 
 
Likewise, the magnetization vector evaluated at the cylinder 
surface (i.e., at 2ρ = ) is: 
 

( ) ( )
2

62 3s ˆ ˆr φ φ
ρ

ρ
ρ =

= = = =M M α α  

 
Therefore, the magnetization current density on the cylinder 
surface is: 
 

( ) ( )2 2 x a
3 a

3

sm n

z

ˆ
ˆ ˆ

ˆ A m
φ ρ

ρ ρ= = =

= ×

= − ⎡ ⎤⎣ ⎦

J M
α

α

 

 

 

Now, we’re 
finally done. 
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Permanent Magnets 
 
For most magnetic material (i.e., where 0µ µ≠ ), we find that the 
magnetization vector ( )rM  will return to zero when a 
magnetization field ( )m rB  is removed.  In other words, the 
magnetic dipoles will vanish, or at least return to their random 
state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

( ) 0m r =B  

( ) 0m r ≠B  ( ) 0r ≠M  

( ) 0r =M  
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However, some magnetic material, called ferromagnetic 
material, will retain its dipole orientation, even when the 
magnetizing field is removed ! 
 
 
 
 
 
 
 
 
 

In  this case, a permanent magnet is formed (just like 
the ones you stick on your fridge)! 
 
Ferromagnetic materials have numerous applications.  
For example, they will attract magnetic material.  

 
Q:  How? 
 
A:  A permanent magnet will of course produce everywhere a 
magnetic flux density ( )rB , which we can either attribute to 
the magnetic dipoles with in the material, or to the equivalent 
magnetic current ( )m rJ . 
 
The magnetic flux density produced by the magnet will act as a 
magnetizing field for some other magnetic material nearby, thus 
creating a second magnetization current ( )m rJ  within the 
nearby material.  The magnetization currents of the material 
and the magnet will attract!  

( ) 0m r =B  ( ) 0r ≠M  
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N 

S 

( )rM  

( )rB  

0µ µ≠  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Another interesting application of ferromagnetic material is in 
non-volatile data storage (e.g., tape or disk).  Ferromagnetics 
can be used as binary memory ! 
 

( )m rJ  

( )m rJ  

F  
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Q:  How? 
 
A: Recall that the magnetization vector in ferromagnetic 
material retains its direction after the magnetizing field 

( )m rB has been removed.  In other words, it “remembers” the 
direction of the magnetizing field.   
 
We can assign each of two different magnetizing directions, 
therefore, a binary state: 
 
 
 
 
 
 
 
 
 
If ferromagnetic material is embedded in a tape or disk, we can 
magnetize (e.g., write) small sections of the media, or detect 
the magnetization (e.g., read ) small sections of the media. 
 
 

( )m rB  

N 

S N 

S 

( )m rB  

“1” “0” 

Figure 8-21

write current

cell

magnetization
vector

motion
read head

write head

magnetic
field

magnetic
field

magnetic tape

coil coil
+ -

N d
dt
Φ

NS NSSN SN SN SN NS NSN S
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Field Equations in 
Magnetic Materials 

 
Now that we have defined a magnetic field ( )rH  and material 
permeability ( )rµ , we can write the magnetostatic (point form) 
equations for fields in magnetic material. 
 
 

( ) ( )

( )

( ) ( ) ( )

x

0

r r

r

r r rµ

∇ =

∇ ⋅ =

=

H J

B

B H

 

 
 

We likewise can express these equations in integral form as: 
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First, note the new form of Ampere’s Law: 
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Where Ienc is the conduction current only (i.e., it does not 
include magnetization current!). 
 
Again, note the analogies to the new form of Gauss’s Law we 
derived for electrostatics: 
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where Qenc is the free-charge enclosed by surface S. 
 
Perhaps the most important result of expressing magnetostatic 
fields in terms of material permeability ( )rµ  is that we do not 
have to rederive any of the results from Chapter 7!   
 
In Chapter 7, the “material” we were concerned with was free 
space.  The permeability of free space is by definition,  
( ) 0rµ µ= . 

 
If the material is not free space, then we simply change the 
results of Chapter 7 to reflect the correct value of 
permeability ( )rµ . 
 
For example, we found that the Biot-Savart Law becomes,: 
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magnetic vector potential is,: 
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or the magnetic flux produced by a infinite line current is: 
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Magnetic Boundary 
Conditions 

 
Consider the interface between two different materials with 
dissimilar permeabilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Say that a magnetic field and a magnetic flux density is present 
in both regions. 
  

Q:  How are the fields in dielectric region 1 (i.e., 
( ) ( ),1 1r rH B ) related to the fields in region 2 (i.e., 
( ) ( ),2 2r rH B )? 

 
A: They must satisfy the magnetic boundary 
conditions ! 

( ) ( )1 1r , rH B  

( ) ( )2 2r , rH B  
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First, let’s write the fields at the interface in terms of their 
normal (e.g., ( )n rH ) and tangential (e.g., ( )t rH ) vector 
components: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our first boundary condition states that the tangential 
component of the magnetic field is continuous across a 
boundary.  In other words: 
 
 

( ) ( )=1 2t b t br rH H  
 
 
 

where br  denotes to any point along the interface (e.g., material 
boundary). 
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                   The tangential component of the magnetic field on 
one side of the material boundary is equal to the tangential 
component on the other side ! 
 
We can likewise consider the magnetic flux densities on the 
material interface in terms of their normal and tangential 
components: 
 
 

 
 
 
 
 
 
 
 
 
 
 

The second magnetic boundary condition states that the normal 
vector component of the magnetic flux density is continuous 
across the material boundary.  In other words: 
 
 

( ) ( )=1 2n b n br rB B  
 
 

where br  denotes any point along the interface (i.e., the 
material boundary). 
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Since ( ) ( )r rµ=B H , these boundary conditions can likewise be 
expressed as: 
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and as: 
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Note again the perfect analogy to the boundary conditions of 
electrostatics! 
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Finally, recall that if a layer of free charge were lying at a 
dielectric boundary, the boundary  condition for electric flux 
density was modified such that:  
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There is an analogous problem in magnetostatics, wherein a 
surface current is flowing at the interface of two magnetic 
materials: 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case the tangential components of the magnetic field 
will not be continuous! 
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Instead, they are related by the boundary condition: 
 
 
 

( ) ( )( ) ( )− =1 2xn sb b bâ r r rH H J  
 
 
 

This expression means that: 
 

1)  ( ) ( )1 2 and t tb br rH H  point in the same direction. 
 
2)  ( ) ( )1 2 and t tb br rH H  are orthogonal to ( )s brJ . 
 
3) The difference between ( ) ( )1 2 and t tb br rH H  is ( )s brJ . 
 

Recall that ( )rH  and ( )s rJ  have the same units—
Amperes/meter! 
 
Note for this case, the boundary condition for the magnetic 
flux density remains unchanged, i.e.: 
 

( ) ( )=1 2n b n br rB B  
 

regardless of ( )s brJ . 
  


