Special Problem 5-3.4

Two slabs of dissimilar dielectric material share a common boundary, as shown below.

It is known that the electric flux density in region 1 (the left side) is:

$$
D_{1}(\bar{r})=6 \varepsilon_{0} \hat{a}_{x}+14 \varepsilon_{0} \hat{a}_{y} \quad\left[C / m^{2}\right]
$$

while the electric flux density in region 2 (the right side) is likewise a constant of the form:

$$
D_{2}(\bar{r})=D_{x} \hat{a}_{x}+D_{y} \hat{a}_{y} \quad\left[C / m^{2}\right]
$$

Determine (in terms of ε_{0}):

1) the electric flux density in region 2 (i.e., find D_{x} and D_{y}).
2) the electric field in region 2.
3) the polarization (i.e., bound) surface charge density at the dielectric boundary.

