Special Problem 2.4-13

Consider vector \boldsymbol{A}, written in terms of orthonormal base vectors $\hat{a}_{x}, \hat{a}_{y}, \hat{a}_{z}$ as:

$$
A=2 \hat{a}_{x}+4 \hat{a}_{z}
$$

We wish to express vector \boldsymbol{A} in terms of a new set of orthonormal base vectors $\hat{i}, \hat{j}, \hat{k}$, i.e.:

$$
\mathrm{A}=A_{i} \hat{i}+A_{j} \hat{j}+A_{k} \hat{k}
$$

We know the following facts:

1. The scalar projection of vector \boldsymbol{A} onto the direction \hat{k} is equal to $-3 \sqrt{2}$.
2. The scalar component of vector \hat{i} in the direction \hat{a}_{x} is equal to 0.5 .
3. The vector component of \hat{i} in the direction \hat{a}_{z} is equal to $-0.5 \hat{a}_{z}$.
4. The angle formed between vectors \hat{j} and \hat{a}_{x} is equal to 60°.
5. The dot product of vectors \hat{j} and \hat{a}_{z} is equal to -0.5 .

Determine values A_{i}, A_{j}, and A_{k}.

