Special Problem 5-4.2

A conducting plate lies on the half-plane $\phi=0$. It has an electric potential of 5 V .

Another conducting plate lies on the half-plane $\phi=90^{\circ}$. It has an electric potential of -5 V .

Filling the volume between the plates is a dielectric wedge with a relative permittivity of 3.0. The plates are not touching, but extend to infinity in both the \hat{a}_{p} and \hat{a}_{z} directions (sort of like an infinite door hinge!).

Find:

1. The electric potential field $V(\bar{r})$ within the dielectric.
2. The electric field within the dielectric.
3. The electric flux density within the dielectric.
4. The surface charge density on each plate.

BIG HINT: The electric potential field is a function of ϕ only (e.g., $\mathrm{V}(\overline{\mathrm{r}})=\mathrm{V}(\phi))!!$

