Special Problem 9-2.2

The circuit below forms two surfaces. The surface on the left is a square denoted as S_1. The surface on the right is a square denoted as S_2. The surface area of each surface is 2 m^2.

The magnetic flux density on surface S_1 is:

$$\mathbf{B}_1(\mathbf{r}, t) = 5 t \hat{a}_z \quad \left[\frac{\text{W}}{\text{m}^2} \right]$$

while the magnetic flux density on surface S_2 is

$$\mathbf{B}_2(\mathbf{r}, t) = t \hat{a}_z \quad \left[\frac{\text{W}}{\text{m}^2} \right]$$

1) Determine the voltages v_1 and v_2 and currents i_1 and i_2.

2) Determine the voltage V_m that a voltage meter would read in the following situation: