Special Problem 9-2.2

The circuit below forms two surfaces. The surface on the left is a square denoted as S_{1}. The surface on the right is a square denoted as S_{2}. The surface area of each surface is $2 \mathrm{~m}^{2}$.

The magnetic flux density on surface S_{1} is:

$$
\mathrm{B}_{1}(\bar{r}, t)=5+\hat{a}_{z} \quad\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]
$$

while the magnetic flux density on surface S_{2} is

1) Determine the voltages v_{1} and v_{2} and currents i_{1} and i_{2}.
2) Determine the voltage V_{m} that a voltage meter would read in the following situation:

