Special Problem 9-2.2

The circuit below forms **two** surfaces. The surface on the **left** is a square denoted as S_1 . The surface on the **right** is a square denoted as S_2 . The surface area of each surface is 2 m^2 .

The magnetic flux density on surface S_1 is:

$$\mathbf{B}_{1}(\overline{r},t) = 5t \,\hat{a}_{z} \qquad \left[\frac{\mathsf{W}}{\mathsf{m}^{2}}\right]$$

while the magnetic flux density on surface S_2 is

- 1) Determine the voltages v_1 and v_2 and currents i_1 and i_2 .
- 2) Determine the voltage V_{m} that a **voltage meter** would read in the following situation:

