Consider vector **A**, written in terms of orthonormal base vectors \hat{a}_x , \hat{a}_y , \hat{a}_z as:

$$\mathbf{A} = 2 \, \hat{a}_x + 4 \, \hat{a}_z$$

We wish to express vector **A** in terms of a **new** set of orthonormal base vectors \hat{i} , \hat{j} , \hat{k} , i.e.:

$$\mathbf{A} = \mathbf{A}_{i} \, \hat{i} + \mathbf{A}_{j} \, \hat{j} + \mathbf{A}_{k} \, \hat{k}$$

We know the following facts:

1. The scalar projection of vector **A** onto the direction \hat{k} is equal to $-3\sqrt{2}$.

- 2. The scalar component of vector \hat{i} in the direction \hat{a}_x is equal to 0.5.
- 3. The vector component of \hat{i} in the direction \hat{a}_z is equal to $-0.5 \hat{a}_z$.
- 4. The **angle** formed between vectors \hat{j} and \hat{a}_{x} is equal to 60°.
- 5. The **dot product** of vectors \hat{j} and \hat{a}_z is equal to -0.5.

Determine values A_i , A_j , and A_k .