Special Problem 2-4.14

Consider a vector \mathbf{A}, written in terms of orthonormal base vectors $\hat{a}, \hat{b}, \hat{c}$:

$$
A=2 \hat{a}-2 \sqrt{2} \hat{c}
$$

Rewrite vector \mathbf{A} in terms of a new set of orthonormal base vectors $\hat{i}, \hat{j}, \hat{k}$, where the angles between the two sets of base vectors are given in the table below:

For example:
$\hat{i}^{\dagger} \uparrow$

	\hat{i}	\hat{j}	\hat{k}
\hat{a}	60°	135°	120°
\hat{b}	60°	45°	120°
\hat{c}	135°	90°	135°

