Special Problem 2.4-9

Consider the vector field:

$$
A(\bar{r})=(y-3) \hat{a}_{x}+z^{3} \hat{a}_{y}+(x+y) \hat{a}_{z}
$$

which describes the magnitude and direction of vector quantity \boldsymbol{A} at every point in space!

1. Determine the magnitude $(|\boldsymbol{A}|)$ and direction $\left(\hat{a}_{A}\right)$ of the vector quantity A at the specific point denoted by position vector:

$$
\bar{r}_{1}=2 \hat{a}_{x}+4 \hat{a}_{y}-3 \hat{a}_{z}
$$

2. Say we know that at the specific point denoted by position vector \bar{r}_{2} (where $\bar{r}_{2} \neq \bar{r}_{1}$), the vector quantity \boldsymbol{A} is equal to:

$$
\mathbf{A}\left(\bar{r}_{2}\right)=7 \hat{a}_{x}-8 \hat{a}_{y}
$$

Determine the position vector $\bar{\Gamma}_{2}$.

