Special Problem 4-6.3

Consider the electric field:

$$
\begin{aligned}
E(\bar{r})= & (3 r \sin \theta-2 \cos \phi) r \hat{a}_{r} \\
& +\cos \theta\left(r^{-1} \sin \phi \tan \theta-r^{2}\right) \hat{a}_{\theta} \\
& +\left(\frac{\cos \phi \cot \theta}{r}+r \sin \phi \csc \theta\right) \hat{a}_{\phi} \quad[V / m]
\end{aligned}
$$

Determine the electric potential difference between point $P_{1}(r=1$, $\left.\theta=30^{\circ}, \phi=0\right)$ and point $P_{2}\left(r=2, \theta=30^{\circ}, \phi=0\right)$.

Hint \#1: Do not attempt to find the electric potential function $V(\bar{r})$!
Hint \#2: Do not attempt to express $E(\bar{r})$ in some other coordinate system!

