Special Problem 8-3.7

In free-space there exists a circular cylinder of radius 2 m , infinite length, and centered along the z-axis.

On the surface of this cylinder, there exists a surface current density:

$$
\mathbf{J}_{s}(\bar{r})=2 \hat{\mathbf{a}}_{\phi}+3 \hat{\mathbf{a}}_{z} \quad \mathrm{~A} / \mathrm{m}
$$

Inside the cylinder, there exist a magnetic field:

$$
H_{2}(\bar{r})=5 \hat{\mathbf{a}}_{z} \quad A / m
$$

Outside the cylinder, the exists a magnetic field of the form:

$$
H_{1}(\bar{r})=\frac{A}{\rho} \hat{\mathbf{a}}_{\phi}+B \hat{\mathbf{a}}_{z} \quad A / m
$$

where A and B are unknown scalar values.

Apply boundary conditions to determine the unknown scalar values A and B.

