Special Problem 8-4.1

A cylinder of **infinite** length is centered along the *z*-axis. This cylinder has a radius of 2 m.

Outside the cylinder (i.e., $\rho > 2$) is a magnetic material with relative permeability $\mu_r = 3$.

The magnetic field inside the cylinder is zero, i.e.,

$$H(ar{r})$$
 = 0 for ho < 2

Flowing on the surface of this cylinder is conduction current:

$$\mathbf{J}_{s}\left(\overline{r}\right) = 4\,\hat{\mathbf{a}}_{\phi} + 3\,\hat{\mathbf{a}}_{z} \quad A \neq m$$

It is known that the magnetic field **outside** the cylinder (where $\mu_r = 3$) has the form:

 $\mathbf{H}(\bar{r}) = \frac{\alpha}{\rho} \, \hat{a}_{\phi} + \frac{\beta}{\rho} \, \hat{a}_{z} \quad \text{for} \quad \rho > 2$

 $3\mu_0$

where α and β are unknown constants.

1. Find the magnetic field $\mathbf{H}(\bar{r})$ outside the cylinder (i.e. the **numeric** values of constants α and β).

2. Determine an expression for the **dipole density** outside the cylinder (i.e., in the magnetic material). $z = \infty$

Y

 $Z = -\infty$