Example: A Simple Ideal Diode Circuit

Consider this simple circuit that includes an ideal diode:

Q: What are i_D^i and V_D^i ?

A: Follow the five easy analysis steps!

Step 1: Let's ASSUME the ideal diode is reverse biased (we're just guessing!).

Step 2: We therefore *ENFORCE* $i_D^i = 0$ by replacing the ideal diode with an **open** circuit.

Step 3: Now we *ANALYZE* the circuit; finding the value of v_D^i .

$$5.0 - v_R - v_D^i = 0$$
 (KVL)

$$\therefore \mathbf{v}_D^i = 5.0 - \mathbf{v}_R$$

$$i_R = i_D^{j}$$
 (KCL)

$$v_R = 2i_R$$
 (Ohm's)

$$i_D^i = 0$$
 (enforced)

$$\dot{i}_R = 0$$

$$\therefore v_R = 2(0) = 0$$

$$\therefore V_D^i = 5.0 - 0 = 5.0 V$$

Step 4: Now let's CHECK our result. \Rightarrow **Is** $V_D^i < 0$??

$$v_D^i = 5.0 > 0$$

We must change our assumption, and then start over (Doh!).

- 1) Now ASSUME the ideal diode is forward biased (what's left?).
- 2) We therefore ENFORCE $v_D^i = 0$ by replacing the ideal diode with an short circuit.

3) Now we ANALYZE the circuit; finding the value of i_D^i .

$$5.0 - v_R - v_D^i = 0$$
 (KVL)

$$\therefore \mathbf{v}_{R} = 5.0 - \mathbf{v}_{D}^{i}$$

$$i_D^i = i_R$$
 (KCL)

$$i_R = v_R/2$$
 (Ohm's)

$$v_D^i = 0$$
 (enforced)

$$\therefore V_R = 5.0 - 0 = 5.0 V$$

$$i_R = 5.0/2 = 2.5 \, mA$$

$$\therefore i_D^{\prime} = 2.5 \, mA$$

4) Now, let's CHECK our result. \Rightarrow Is $i_D^i > 0$??

$$i_D^i = 2.5 \, mA > 0$$

Our assumption is correct!

Therefore, in this circuit, we now know that:

$$V_D^i = 0$$
 and $i_D^i = 2.5 \, mA$