Example: A Simple Ideal Diode Circuit

Consider this simple circuit that includes an ideal diode:

Q: What are i_{0}^{i} and v_{0}^{i} ?

A: Follow the five easy analysis steps!

Step 1: Let's ASSUME the ideal diode is reverse biased (we're just guessing!).

Step 2: We therefore ENFORCE $i_{0}^{i}=0$ by replacing the ideal diode with an open circuit.

Step 3: Now we ANALYZE the circuit; finding the value of v_{D}^{i}.

$$
\begin{array}{ll}
5.0-v_{R}-v_{D}^{i}=0 & (\mathrm{KVL}) \\
\therefore v_{D}^{\prime}=5.0-v_{R} \\
i_{R}=i_{0}^{i} & (\mathrm{KCL}) \\
v_{R}=2 i_{R} & (0 \mathrm{hm} \\
i_{D}^{i}=0 & \text { (enfo } \\
\therefore i_{R}=0 \\
\therefore v_{R}=2(0)=0 \\
\therefore v_{D}^{i}=5.0-0=5.0 \mathrm{~V}
\end{array}
$$

Step 4: Now let's CHECK our result. \Rightarrow Is $v_{D}^{\prime}<0$??

$$
v_{D}^{i}=5.0>0
$$

We must change our assumption, and then start over (Doh!).

1) Now ASSUME the ideal diode is forward biased (what's left?).
2) We therefore ENFORCE $v_{D}^{i}=0$ by replacing the ideal diode with an short circuit.
3) Now we ANALYZE the circuit; finding the value of i_{0}^{i}.

$$
\begin{array}{l|}
5.0-v_{R}-v_{D}^{i}=0 \\
\therefore v_{R}=5.0-v_{D}^{i} \\
\\
i_{D}^{i}=i_{R} \tag{Ohm's}\\
i_{R}=v_{R} / 2 \\
v_{0}^{i}=0 \\
\text { (KL) } \\
\text { (Ohm's) } \\
\therefore v_{R}=5.0-0=5.0 \mathrm{~V} \\
\therefore i_{R}=5.0 / 2=2.5 \mathrm{~mA} \\
\therefore i_{0}^{i}=2.5 \mathrm{~mA}
\end{array}
$$

4) Now, let's CHECK our result. \Rightarrow Is $i_{0}^{i}>0$??

$$
i_{0}^{i}=2.5 \mathrm{~mA}>0
$$

Our assumption is correct!
Therefore, in this circuit, we now know that:

$$
v_{D}^{i}=0 \text { and } i_{D}^{i}=2.5 \mathrm{~mA}
$$

