3.1 The Ideal Diode (pp.139-141)

Diodes: The most fundamental non-linear circuit element
A. The Ideal Diode Symbol

Note:
anode

1. Device is not symmetric!
2. Positive current defined as flowing from anode to cathode.
3. Voltage across diode defined as positive when anode voltage > cathode voltage.

B. Ideal Diode Behavior

The ideal diode \rightarrow a close approx. of a physical diode.
First, let's recall linear device behavior!

HO: Linear Device Behavior

For an ideal diode:

v_{D}^{i} never $>0!$
$i_{D}^{i}=0$ if $v_{D}^{i}<0$

The Ideal Diode is non-linear!
C. Diode Bias Regions

Ideal diode operates in one of two states:

1) Forward Biased \rightarrow "on" or "active"

$$
v_{D}^{i}=0 \text { if } i_{D}^{i}>0
$$

i.e., acts as a short, IF current is positive.
2) Reverse Biased \rightarrow "off" or "inactive"

$$
i_{0}^{i}=0 \text { if } v_{0}^{i}<0
$$

i.e., acts as a open, IF voltage is negative.

Note: No power is dissipated in either mode!

$$
\rightarrow P_{0}^{i}=v_{0}^{i} i_{0}^{i}=0 \text { always! }
$$

HO The Ideal Diode

HO Diode Mechanical Analogy
Q: What turns a diode "on" or "off"?

A: The circuit attached to it!

Problem: It is very difficult to determine what the circuit is trying to do!

D. Ideal Diode Circuit Analysis

Consider this ideal diode circuit:

Which we more compactly write as:

HO: The Ideal Diode Circuit Analysis Guide

HO: Example: A Simple Ideal Diode Circuit
HO: Example: Analysis of a Complex Diode Circuit

