3.1 The Ideal Diode (pp.139-141)

Diodes: The most fundamental non-linear circuit element
A. The Ideal Diode Symbol

Note:
anode

1. Device is not symmetric!
2. Positive current defined as flowing from anode to cathode.
3. Voltage across diode defined as positive when anode voltage > cathode voltage.

B. Ideal Diode Behavior

The ideal diode \rightarrow a close approx. of a physical diode.
First, let's recall linear device behavior!

HO: Linear Device Behavior

For an ideal diode:

v_{D}^{i} never $>0!$
$i_{D}^{i}=0$ if $v_{D}^{i}<0$

The Ideal Diode is non-linear!
C. Diode Bias Regions

Ideal diode operates in one of two states:

1) Forward Biased \rightarrow "on" or "active"

$$
v_{D}^{i}=0 \text { if } i_{D}^{i}>0
$$

i.e., acts as a short, IF current is positive.
2) Reverse Biased \rightarrow "off" or "inactive"

$$
i_{0}^{i}=0 \text { if } v_{0}^{i}<0
$$

i.e., acts as a open, IF voltage is negative.

Note: No power is dissipated in either mode!

$$
\rightarrow P_{0}^{i}=v_{0}^{i} i_{0}^{i}=0 \text { always! }
$$

HO The Ideal Diode

HO Diode Mechanical Analogy
Q: What turns a diode "on" or "off"?

A: The circuit attached to it!

Problem: It is very difficult to determine what the circuit is trying to do!

D. Ideal Diode Circuit Analysis

Consider this ideal diode circuit:

Which we more compactly write as:

HO: The Ideal Diode Circuit Analysis Guide

HO: Example: A Simple Ideal Diode Circuit
HO: Example: Analysis of a Complex Diode Circuit

Linear Device Behavior

1) Recall the circuit behavior of a resistor:

2) If $R=0$, then we have a short circuit:

Linear Device Behavior

1) Recall the circuit behavior of a resistor:

2) If $R=0$, then we have a short circuit:

3) If $R=\infty$, then we have a open circuit:

4) We can also plot the behavior of both current and voltage sources:

$i=1 A \underbrace{+}_{-}$
5) If $R=\infty$, then we have a open circuit:

6) We can also plot the behavior of both current and voltage sources:

The Ideal Diode

An ideal diode-the circuit device with a split personality!
\rightarrow Is it a short? Or is it an open?

	$v_{0}^{i}<0$	$v_{0}^{i}=0$	$v_{0}^{i}>0$
$i_{0}^{i}>0$	invalid	forward biased	invalid
$i_{0}^{i}=0$	reverse biased	no bias	invalid
$i_{0}^{i}<0$	invalid	invalid	invalid

The Diode

Mechanical Analogy

An ideal diode is sort of like a mechanical valve!
side
A

Case 1: Valve allows liquid to flow in pipe from side A to side C.

There is no drop in pressure (P) from side A to side C.

$$
\Rightarrow \quad P_{A}-P_{C}=0
$$

Case 2: Valve prevents liquid from flowing back from side C to side A.

$$
P_{c}
$$

No flow occurs when pressure P_{C} is greater than pressure P_{A}

$$
\Rightarrow \quad P_{A}-P_{C}<0
$$

Note the analogies with an ideal diode:

Valve
Pressure
Liquid Flow
Side A
Side C
Case 1
Case 2

Diode
Voltage
Current
Anode
Cathode
Forward Bias
Reverse Bias

The Ideal Diode

Circuit Analysis Guide

Follow these easy steps to successfully analyze a circuit containing one or more ideal diodes!

Step 1: ASSUME a bias state for each ideal diode.
\Rightarrow In other words, GUESS!!
Either,
a) ASSUME an ideal diode is forward biased, or
b) ASSUME it is reversed biased.

Step 2: ENFORCE the equality condition consistent with your assumption.
a) If you assume an ideal diode is f.b., then ENFORCE the equality:

$$
v_{D}^{i}=0
$$

HOW? \Rightarrow By replacing the ideal diode with a short circuit!
b) If you assumed an ideal diode was r.b., then ENFORCE the condition that:

$$
i_{D}^{i}=0
$$

HOW? \Rightarrow By replacing the ideal diode with an open circuit.

IMPORTANT !!! Retain the same current and voltage definitions when you replace the ideal diode!

Step 3: ANALYZE the circuit.

After the all ideal diodes have been replaced with either shorts or opens:
a) Determine all desired (required) circuit values.
b) Determine i_{0}^{i} through each short circuit and v_{D}^{i} across each open circuit.

Step 4: CHECK the inequality consistent with your assumption to see if this assumption is correct.

HOW??

a) An ideal diode cannot have negative current flowing through it. If you ASSUMED the ideal diode was forward biased, CHECK to see if the short circuit current is positive, i.e.:

$$
i_{D}^{i}>0
$$

If true, you ASSUMED correctly! If not, your f.b. assumption is wrong.
b) An ideal diode cannot have positive voltage across it. If you ASSUMED the ideal diode was reversed biased, CHECK to see if the open circuit voltage is negative, i.e.:

$$
v_{D}^{i}<0
$$

If true, you ASSUMED correctly! If not, your r.b. assumption is wrong.

Step 5: If you ASSUMED incorrectly, then change your assumptions and return to step 1 !

Notes on ideal diode circuit analysis:

1) You must check all assumptions in this form:

$$
i_{D}^{i}=2 m A>0 \checkmark \text { or } v_{D}^{i}=2.2>0 X
$$

2) Do not check the condition that you enforced!
3) For every circuit, one and only one assumption will be valid.

Example: A Simple Ideal Diode Circuit

Consider this simple circuit that includes an ideal diode:

Q: What are i_{0}^{i} and v_{0}^{i} ?

A: Follow the five easy analysis steps!

Step 1: Let's ASSUME the ideal diode is reverse biased (we're just guessing!).

Step 2: We therefore ENFORCE $i_{0}^{i}=0$ by replacing the ideal diode with an open circuit.

Step 3: Now we ANALYZE the circuit; finding the value of v_{D}^{i}.

$$
\begin{array}{ll}
5.0-v_{R}-v_{D}^{i}=0 & (\mathrm{KVL}) \\
\therefore v_{D}^{\prime}=5.0-v_{R} \\
i_{R}=i_{0}^{i} & (\mathrm{KCL}) \\
v_{R}=2 i_{R} & (0 \mathrm{hm} \\
i_{D}^{i}=0 & \text { (enfo } \\
\therefore i_{R}=0 \\
\therefore v_{R}=2(0)=0 \\
\therefore v_{D}^{i}=5.0-0=5.0 \mathrm{~V}
\end{array}
$$

Step 4: Now let's CHECK our result. \Rightarrow Is $v_{D}^{\prime}<0$??

$$
v_{D}^{i}=5.0>0
$$

We must change our assumption, and then start over (Doh!).

1) Now ASSUME the ideal diode is forward biased (what's left?).
2) We therefore ENFORCE $v_{D}^{i}=0$ by replacing the ideal diode with an short circuit.
3) Now we ANALYZE the circuit; finding the value of i_{0}^{i}.

$$
\begin{array}{l|}
5.0-v_{R}-v_{D}^{i}=0 \\
\therefore v_{R}=5.0-v_{D}^{i} \\
\\
i_{D}^{i}=i_{R} \tag{Ohm's}\\
i_{R}=v_{R} / 2 \\
v_{0}^{i}=0 \\
\text { (KL) } \\
\text { (Ohm's) } \\
\therefore v_{R}=5.0-0=5.0 \mathrm{~V} \\
\therefore i_{R}=5.0 / 2=2.5 \mathrm{~mA} \\
\therefore i_{0}^{i}=2.5 \mathrm{~mA}
\end{array}
$$

4) Now, let's CHECK our result. \Rightarrow Is $i_{0}^{i}>0$??

$$
i_{0}^{i}=2.5 \mathrm{~mA}>0
$$

Our assumption is correct!
Therefore, in this circuit, we now know that:

$$
v_{D}^{i}=0 \text { and } i_{D}^{i}=2.5 \mathrm{~mA}
$$

Example: Analysis of a Complex Diode Circuit

Consider this circuit with two ideal diodes:

Let's analyze this circuit and find $v_{01}^{i}, i_{01}^{i}, v_{02}^{i}$, and i_{02}^{i} !
Remember, we must accomplish each of the five steps:
Step 1: ASSUME that both D_{1} and D_{2} are "on" (might as well!).
Step 2: ENFORCE the equalities $v_{D 1}^{i}=0=v_{D 2}^{i}$, by replacing each ideal diode with a short circuit.

Step 3: ANALYZE the resulting circuit, and find i_{01}^{i} and i_{02}^{i}.

Begin with KCL:

$$
i=i_{D 1}^{i}+i_{D 2}^{i}
$$

where

$$
i=\frac{10.0-0}{10}=1.0 \mathrm{~mA}
$$

and

$$
i_{02}^{i}=\frac{0-(-10)}{5}=\frac{10}{5}=2.0 \mathrm{~mA}
$$

Therefore, $\quad i_{01}^{i}=i-i_{02}^{i}=1.0-2.0=-1.0 \mathrm{~mA}$

Step 4: Now we must CHECK inequalities to see if our assumptions are correct!

$$
\begin{aligned}
& i_{01}^{i}=-1.0 \mathrm{~mA}<0 \\
& i_{02}^{i}=2.0 \mathrm{~mA}>0
\end{aligned}
$$

One assumption is therefore INCORRECT. We must proceed to step 5-change our assumptions and completely start again!

A: NO! The solution for diode D_{2} is dependent on the state of both diodes D_{1} and D_{2}. If the assumption of just one diode turns out to be incorrect, then the solutions for all diodes are wrong!

So, let's change our assumption and start all over again!

Step 1: Now ASSUME that D_{1} is "off" and D_{2} is "on".

Step 2: ENFORCE $i_{01}^{i}=0$ (D_{1} open) and $v_{02}^{i}=0$ (D_{2} short $)$.

Step 3: ANALYZE resulting circuit, and find $v_{D 1}^{i}$ and $i_{D 2}^{i}$.

Note $i=i_{02}^{i}=\frac{10.0-(-10.0)}{10+5}=\frac{20.0}{15}=1.33 \mathrm{~mA}$
and from KVL:

$$
\begin{aligned}
& 10.0-10 i-v_{0}^{i}=0 \\
& 10.0-10(1.33)-v_{0}^{i}=0 \\
& \therefore v_{0}^{\prime}=10.0-10(1.33)=-3.33 v
\end{aligned}
$$

4) CHECK our assumptions.

$$
\begin{aligned}
& i_{D 2}^{i}=1.33 \mathrm{~mA}>0 \\
& v_{D 1}^{i}=-3.33 \mathrm{~V}<0
\end{aligned}
$$

\therefore Assumptions are correct! We are finished!

$$
\begin{array}{ll}
v_{01}^{i}=-3.33 \mathrm{~V} & i_{D 1}^{i}=0 \\
v_{D 2}^{i}=0 & i_{D 2}^{i}=1.33 \mathrm{~mA}
\end{array}
$$

