3.1 The Ideal Diode (pp.139-141)

Diodes: The most fundamental <u>non-linear</u> circuit element

Note:

- 1. Device is not symmetric!
- 2. Positive current defined as flowing from anode to cathode.
- 3. Voltage across diode defined as positive when anode voltage > cathode voltage.
- B. Ideal Diode Behavior

The ideal diode \rightarrow a close approx. of a physical diode.

First, let's recall linear device behavior!

2/5

$$v_D^i = 0$$
 if $i_D^i > 0$

i.e., acts as a short, IF current is positive.

 $i_{D}^{i} = 0$ *if* $V_{D}^{i} < 0$

i.e., acts as a open, IF voltage is negative.

Note: No power is dissipated in either mode!

 $\rightarrow P_D^i = v_D^i i_D^i = 0 \quad \text{always!}$

HO The Ideal Diode

HO Diode Mechanical Analogy

Q: What turns a diode "on" or "off"?

A: The circuit attached to it!

<u>Problem</u>: It is very difficult to determine what the circuit is trying to do!

Jim Stiles

HO: The Ideal Diode Circuit Analysis Guide

HO: Example: A Simple Ideal Diode Circuit

HO: Example: Analysis of a Complex Diode Circuit

Linear Device Behavior

1) Recall the circuit behavior of a **resistor**:

 $\rightarrow_{_{V}}$

Linear Device Behavior

1) Recall the circuit behavior of a **resistor**:

2) If R=O, then we have a **short** circuit:

<u>The Diode</u> <u>Mechanical Analogy</u>

<u>The Ideal Diode</u> <u>Circuit Analysis Guide</u>

Follow these easy steps to successfully analyze a circuit containing one or more **ideal** diodes !

Step 1: ASSUME a bias state for each ideal diode.

□ In other words, GUESS !!

Either,

a) ASSUME an ideal diode is forward biased, or

b) ASSUME it is reversed biased.

Step 2: ENFORCE the **equality** condition consistent with your assumption.

a) If you assume an ideal diode is **f.b**., then *ENFORCE* the equality:

$$v_D^i = 0$$

HOW? ⇒ By replacing the ideal diode with a short circuit!

b) If you assumed an ideal diode was **r.b**., then *ENFORCE* the condition that:

$$i_{D}^{'} = 0$$

HOW ? ⇒ By replacing the ideal diode with an **open** circuit.

IMPORTANT !!! Retain the **same** current and voltage definitions when you replace the ideal diode!

If, then, or

$$\vec{i}_{D}^{i} \bigvee \mathbf{\Psi}_{D}^{i} = \mathbf{0} \bigvee \mathbf{v}_{D}^{i} = \mathbf{0} \bigvee \mathbf{v}_{D}^{i} = \mathbf{0} \bigvee \mathbf{v}_{D}^{i} = \mathbf{0} \bigvee \mathbf{v}_{D}^{i} = \mathbf{0}$$

Step 3: ANALYZE the circuit.

After the all **ideal** diodes have been replaced with either shorts or opens:

a) Determine all desired (required) circuit values.

b) Determine i_{D}^{i} through each short circuit and v_{D}^{i} across each open circuit.

<u>Step 4</u>: *CHECK* the **inequality** consistent with your assumption to see **if** this assumption is correct.

HOW ??

a) An **ideal** diode cannot have negative current flowing through it. If you ASSUMED the ideal diode was **forward biased**, *CHECK* to see if the **short** circuit current is positive, i.e.:

If true, you ASSUMED correctly ! If not, your f.b. assumption is wrong.

b) An **ideal** diode cannot have positive voltage across it. If you ASSUMED the ideal diode was **reversed biased**, *CHECK* to see if the **open** circuit voltage is negative, i.e.:

If true, you ASSUMED correctly ! If not, your r.b. assumption is wrong.

<u>Step 5:</u> If you ASSUMED incorrectly, then change your assumptions and return to step 1!

Notes on ideal diode circuit analysis:

1) You **must** check all assumptions in this form:

$$i_{D}^{i} = 2 \ mA > 0 \ \checkmark \quad \text{or} \quad v_{D}^{i} = 2.2 > 0 \ \varkappa$$

2) Do not check the condition that you enforced !

 For every circuit, one and only one assumption will be valid.

<u>Example: A Simple Ideal</u>

Diode Circuit

Consider this simple circuit that includes an **ideal** diode:

Q: What are i_D^i and v_D^i ?

A: Follow the five easy analysis steps !

Step 1: Let's *ASSUME* the ideal diode is **reverse biased** (we're just guessing!).

Step 2: We therefore *ENFORCE* $i_{D}^{i} = 0$ by replacing the ideal diode with an **open** circuit.

Step 3: Now we ANALYZE the circuit; finding the value of v'_D .

<u>Example: Analysis of a</u> <u>Complex Diode Circuit</u>

Consider this circuit with two ideal diodes:

Step 2: ENFORCE the equalities $v'_{D1} = 0 = v'_{D2}$, by replacing each ideal diode with a short circuit.

Step 4: Now we must *CHECK* **inequalities** to see if our assumptions are correct!

$$i_{D1}^{i} = -1.0 \ mA < 0$$

$$i_{D2}^{i} = 2.0 \ mA > 0$$

One assumption is therefore **INCORRECT**. We must proceed to **step 5**—change our assumptions and **completely** start again!

Q: Wait a second! We don't have to completely start from the beginning, do we? After all, our assumption about diode D_2 turned out to be true—so we already know that $i_{D2}^i = 2.0$ and $v_{D2}^i = 0$, right?

A: NO! The solution for diode D_2 is dependent on the state of both diodes D_1 and D_2 . If the assumption of just one diode turns out to be incorrect, then the solutions for all diodes are wrong!

So, let's change our assumption and start all over again!

Step 1: Now ASSUME that
$$D_1$$
 is "off" and D_2 is "on".

Step 2: ENFORCE $i'_{D1} = 0$ (D open) and $v'_{D2} = 0$ (D short).

Step 3: ANALYZE resulting circuit, and find v'_{D1} and i'_{D2} .

Jim Stiles

