A Junction Diode - A semi-conductor implementation, usually in <u>Silicon</u>.

I.E., A "real" diode!

Similar to an ideal diode, its circuit symbol is:

HO: The Junction Diode Curve

HO: The Junction Diode Equation

A. The Forward Bias Region

Consider when $v_D \gg nV_T$ (i.e, when $v_D \gg \approx 25 mV$).

(f.b.)!

Note then (when $v_D \gg \approx 25 mV$) that $e^{\frac{v_D}{nV_T}} \gg 1$, so that a forward biased junction diode approximation is: $i_{D} = I_{s} \left(e^{\frac{v_{D}}{nV_{T}}} - 1 \right)$ $\approx I_{s} e^{\frac{v_{D}}{nV_{T}}} \qquad for \quad v_{D} \gg nV_{T}$ An exponential curve ! \rightarrow i_D increases rapidly with v_D in the f.b. region! **Example:** $I_s = 10^{-12}$, n=1 $v_D(V)$ İD 0.4 **9** μ**Α** 0.5 0.5 mA 0.6 26 mA 0.7 1.4 A 0.8 79 A 0.9 4311A \rightarrow I'm melting! ... A junction diode in forward bias with significant but **plausible** current always has a voltage v_D between approximately 0.5V and 0.8 V!

I.E., $0.5 < v_p < 0.8$ (aprox.) when in f.b.

Therfore, we often **APPROXIMATE** the **forward biased** junction diode voltage as simply:

$$v_D \simeq 0.7$$
 V

Note that this approximation:

- a) is typically accurate to within a few hundred mVs.
- b) is completely <u>subjective</u> (e.g., some texts use
 0.6 or 0.65 V).

HO: The Junction Diode Forward Bias Equation

HO: Example: A Junction Diode Circuit

B. The Reverse Bias Region

Now consider when $v_D \ll -nV_T$ (i.e, when $v_D \ll \approx -25mV$).

→ The junction diode is said to be "reverse biased" (r.b.)!

Note then that now $e^{\frac{v_0}{nV_T}} \ll 1$, so that a reverse biased junction diode approximation is:

$$i_{D} = I_{s} \left(e^{\frac{V_{D}}{nV_{T}}} - 1 \right)$$
$$\approx -I_{s} \qquad for \quad V_{D} \ll -nV_{T}$$

Therefore, a reverse biased junction diode has a **tiny**, **negative** current.

→ Scale current I_s if very sensitive to temperature (e.g. doubles for each 10° C rise).

HO: Forward and Reverse Bias Approximations

C. The Breakdown Region

If v_D becomes too **negative**, then diode will **breakdown** (b.d.)!

* I.E., significant current will flow from cathode to anode $(i_D < 0 !)$.

D. Power Dissipation in Junction Diodes

Consider the **power** dissipated by a junction diode (i.e., P = VI)

f.b. $\rightarrow P \simeq 0.7 i_D$ (moderate)

 $r.b \rightarrow P \simeq -I_s v_b \quad (tiny)$

b.d \rightarrow $P \simeq -V_{ZK} i_D$ (big, potentially destructive)

Thus, we typically try to **avoid** breakdown. In other words, we desire V_{ZK} to be as **big** as possible!