Applying a Drain Voltage to an NMOS Device

Say we apply a voltage at the gate of an NMOS device that is sufficiently large to induce a conducting channel (i.e., $V_{GS} - V_t > 0$).

Now, say that we additionally place a voltage at the NMOS drain electrode, such that:

$$V_{DS} > 0$$

where:

$$V_{DS} = V_D - V_S = \text{Drain-to-Source Voltage}$$

Now guess what happens—current begins to flow through the induced channel!

Q: Current! I thought current could not flow because of the two p-n junctions in the NMOS device!

A: Remember, that was before we applied a sufficient gate voltage. With this voltage applied, an n-type channel is induced, forming a conducting channel from drain to source!
Recall that because of the SiO$_2$ layer, the gate current is zero (i.e., $i_G = 0$).

Thus, all current entering the drain will exit the source. We therefore conclude that:

$$i_S = i_D$$

As a result, we refer to the channel current for NMOS devices as simply the drain current i_D.

Q: So, I see that you have now defined current i_D and voltages v_{GS} and v_{DS}. Just how are these parameters related?

A: First, we find that an increasing v_{GS} or, more specifically, an increasing excess gate voltage $v_{GS} - V_t$ will result in a higher channel conductivity (in other words, a lower channel resistivity).

Thus, we find that the drain current i_D will increase as a positive excess gate voltage $v_{GS} - V_t$ increases (assuming that $v_{DS} > 0$).

This process, of increasing the induced channel conductivity by increasing the excess gate voltage, is otherwise known as channel enhancement. This is where the enhancement MOSFET gets its name!
Q: OK, but what about the relationship between drain current i_D and voltage v_{DS}?

A: This relationship is a little complicated! Generally speaking, however, a positive v_{DS} results in a positive i_D, and the larger the v_{DS}, the larger the drain current i_D.

More specifically, we find that when v_{DS} is small (we’ll see how small later), the drain current will be directly proportional to the voltage drain to source v_{DS}.

$$i_D \propto v_{DS} \quad \text{if } v_{DS} \text{ small}$$

In other words, if v_{DS} is zero, the drain current i_D is zero. Or, if the voltage v_{DS} increases by 10%, the drain current will likewise increase by 10%. Note this is just like a resistor!

$$i = \frac{v}{R} \quad \therefore i \propto v$$

Thus, if (and only if!) v_{DS} is small, the induced channel behaves like a resistor—the current through the channel (i_D) is directly proportional to the voltage across it (v_{DS}).
In other words, we can (for small values of v_{DS}), define a channel resistance r_{DS}:

$$i_D \propto v_{DS}, \quad \frac{v_{DS}}{i_D} = r_{DS} \text{ (if } v_{DS} \text{ small)}$$

Note that this resistance value depends on the conductivity of the induced channel—which in turn is dependent on the excess gate voltage!

In other words, the channel behaves like a voltage controlled resistor (provided v_{DS} is small):

$$r_{DS} = f(v_{gs} - V_t) \quad \text{if } v_{DS} \text{ small}$$

Thus, if we were to plot drain current i_D versus v_{DS} for various excess gate voltages, we would see something like this:
Q: Yawn! It is apparent that an NMOS transistor is so simple that virtually any intergalactic traveler should be able to understand it. It’s just a voltage controlled resistor—right?

A: WRONG! Remember, channel resistance r_{DS} only has meaning if v_{DS} is small—and most often v_{DS} will not be small!

As v_{DS} increases from our presumably small value, we find that strange things start to happen in our channel!

Recall that primarily, the free-electrons in our inversion layer (the induced channel) were attracted to the gate from the heavily doped n+ Silicon regions under the drain and source.
But the gate now has competition in attracting these free electrons!

It was “easy” to attract free electrons to the gate when the gate electrode voltage was much larger than both the drain and source voltage (i.e., when \(v_{GS} \gg v_{DS} \)). But as the drain voltage increases, it begins to attract free electrons of its own!

Recall that positive current entering the drain will actually consist mainly of free electrons exiting the drain! As a result, the concentration of free-electrons in our inversion layer will begin to decrease in the vicinity of the drain.

In other words, increasing \(v_{DS} \) will result in decreasing channel conductivity!
Thus, increasing the v_{DS} will have two effects on the NMOS device:

1. Increasing v_{DS} will increase the potential difference (voltage) across the conducting channel, an effect that works to increase the drain current i_D.

2. Increasing v_{DS} will decrease the conductivity of the induced channel, and effect that works to decrease the drain current i_D.

For small values of v_{DS}, the second effect is tiny, so that the increase in drain current is directly proportional to the increase in voltage v_{DS} (hence, we can define channel resistance r_{DS}). For example, a 10% increase in v_{DS} will result in a 10% increase in drain current.

However, as v_{DS} increases, the second effect will become more and more pronounced. We find then that the drain current will no longer be directly proportional to the voltage v_{DS}. The reduction in channel conductivity will begin to "counteract" the increase in potential across the channel.

For example, a 10% increase in v_{DS} may result in only a 9% increase in i_D. Likewise, if we increase v_{DS} another 10%, the drain current may then increase only 8% (and so on).
Eventually, we find that the an increase in v_{DS} will result in no further increase drain current i_D!! Effect 2 will completely "counteract" effect 1, so that there is no more increase in drain current as v_{DS} increases.

When this occurs, we say that we have "pinched-off" the induced channel—in other words the channel is in pinch off.

Q: So, if we continue to increase v_{DS} after the channel is "pinched off", does the drain current actually begin to decrease?

A: NO! A interesting thing happens when the channel is in pinch off. As we further increase v_{DS}, the drain current i_D will remain unchanged (approximately)! That is, the drain current will be a constant (approximately) with respect to v_{DS}.

i_D directly proportional to small v_{DS}

increasing v_{DS} reduces channel conductivity

i_D directly proportional to small v_{DS}

increasing v_{DS} reduces channel conductivity

i_D is constant with v_{DS}

pinch-off point
Note that there are **three distinct channel conditions** in for NMOS operation.

* Depending on the value of \(v_{GS} \), we can have an **induced channel**, or **no** conducting channel at all!

* Then if we have an **induced channel** (i.e., \(v_{GS} - V_t > 0 \)), (depending on the value of \(V_{DS} \)) the channel can be either be **pinched-off** or **not**!

Each of these **three** possibilities has a **name**—they are the names of our **NMOS transistor modes**!

1. **Cutoff** - When \(v_{GS} - V_t < 0 \), **no** channel is induced (no inversion layer is created), and so \(i_D = 0 \). We call this mode **CUTOFF**.

2. **Triode** - When an induced channel **is** present (i.e., \(v_{GS} - V_t > 0 \)), but the value of \(V_{DS} \) is **not** large enough to pinch-off this channel, the NMOS is said to be in **TRIODE** mode.

3. **Saturation** - When an induced channel **is** present (i.e., \(v_{GS} - V_t > 0 \)), and the value of \(V_{DS} \) **is** large enough to pinch-off this channel, the NMOS is said to be in **SATURATION** mode.
We can summarize these modes in a table:

<table>
<thead>
<tr>
<th>MODE</th>
<th>INDUCED CHANNEL?</th>
<th>CHANNEL PINCH-OFF?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTOFF</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>TRIODE</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>SATURATION</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Diagram:
- **Triode Region**
- **Saturation Region**
- Pinch-off point

Axes:
- i_D (current)
- v_{DS} (voltage)