Example: Constructing a PWL Model

For a certain junction diode, we know that:

\[i_b = 10 \text{ mA} \quad \text{when} \quad v_b = 0.7 \text{ V} \]

and

\[i_b = 1 \text{ mA} \quad \text{when} \quad v_b = 0.6 \text{ V} \]

Say we wish to construct a PWL model that will approximate this junction diode behavior for diode currents from, say, approximately 1 mA to approximately 10 mA.

Recall that the resulting model will relate diode voltage \(v_D \) to diode current \(i_D \) as a line of the form:

\[i_D = \left(\frac{1}{r_d} \right) v_D - \left(\frac{v_D}{r_d} \right) \]

We therefore need to determine the values of \(v_{D0} \) and \(r_d \) such that this PWL model “line” will intersect the two points \(i_{D1} = 1.0, v_{D1} = 0.6 \) and \(i_{D2} = 10.0, v_{D2} = 0.7 \).
The slope of this line must therefore be:

\[m = \frac{i_{D2} - i_{D1}}{V_{D2} - V_{D1}} = \]

Thus our PWL model resistor value \(r_d \) must be:

\[r_d = \frac{1}{m} = \]

Or in other words, \(r_d = 11.1 \Omega \).

Q: Wow! That’s a very small resistance value. Are you sure we calculated \(r_d \) correctly?

A: Typically, we find that the resistor value in the PWL model is small. In fact, it is frequently less than 1 \(\Omega \) when we attempt to match the junction diode curve in a “high” current region (e.g., from \(i_D = 50 \text{ mA} \) to \(i_D = 500 \text{ mA} \)).

Now that we have determined \(r_d \), we can insert either point into the model line equation and solve for \(V_{D0} \). For example, the equations:

\[i_{D1} = \left(\frac{1}{r_d} \right) v_{D1} - \left(\frac{V_{D0}}{r_d} \right) \quad \text{or} \quad i_{D2} = \left(\frac{1}{r_d} \right) v_{D2} - \left(\frac{V_{D0}}{r_d} \right) \]
become either:

\[V_{D0} = V_{D1} - i_{D1} r_d \]

\[= \]

\[= \]

or

\[V_{D0} = V_{D2} - i_{D2} r_d \]

\[= \]

\[= \]

In other words, we can use either point to determine \(V_{D0} \).

Our PWL model is therefore:

\[
i_d = \begin{cases}
0 & \text{for } V_d < 0.589 \text{ V} \\
\frac{V_d - 0.589}{0.0111} \text{ mA} & \text{for } V_d > 0.589 \text{ V}
\end{cases}
\]
Now, compare this PWL model to the CVD model:

\[V_D = 0.589 \text{ V} \quad r_d = 11.1 \text{ } \Omega \]

\[V_D = 0.70 \text{ V} \]

Note that the CVD model can be viewed as a PWL model with \(V_{D0} = 0.7 \text{ V} \) and \(r_d = 0.0 \). Compare those values with our model \((V_{D0} = 0.589 \text{ V} \text{ and } r_d = 11.1 \Omega) \) — not much difference!

Thus, the PWL model is not a radical departure from the CVD model (typically \(V_{D0} \) is close to 0.7 V and \(r_d \) is very small). Instead, the PWL can be view as slight improvement of the CVD model.