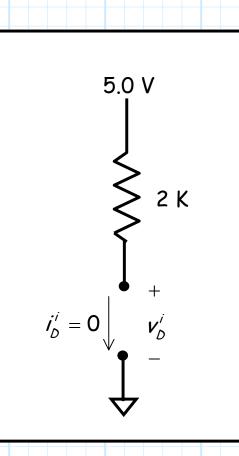

Example: A Simple Ideal Diode Circuit

Consider this simple circuit that includes an ideal diode:


Q: What are i_D^i and V_D^i ?

A: Follow the five easy analysis steps!

Step 1: Let's ASSUME the ideal diode is reverse biased (we're just guessing!).

Step 2: We therefore *ENFORCE* $i_D^{\prime} = 0$ by replacing the ideal diode with an **open** circuit.

Step 3: Now we *ANALYZE* the circuit; finding the value of v_D^i .

(KVL)

(KCL)

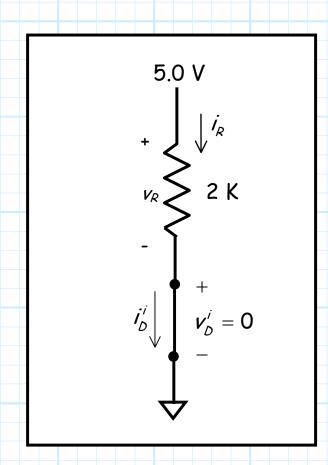
(Ohm's)

(enforced)

∴ *i_R* =

∴ *V_R* =

 $\therefore V_D^i =$


Step 4: Now let's CHECK our result. \Rightarrow **Is** $V_D^i < 0$??

 $v_D^i =$

We must change our assumption, and then start over (Doh!).

- 1) Now ASSUME the ideal diode is forward biased (what's left?).
- 2) We therefore *ENFORCE* $v_D^i = 0$ by replacing the ideal diode with an **short** circuit.

3) Now we ANALYZE the circuit; finding the value of i_D^i .

(KVL)

(KCL)

(Ohm's)

(enforced)

- $\therefore V_R =$
- ∴ *i_R* =
- $\therefore i_D^j =$
- 4) Now, let's CHECK our result. \Rightarrow Is $i_D^i > 0$??

Our assumption is correct!

Therefore, in this circuit, we now know that:

$$V_D^i = 0$$
 and $i_D^i =$