Consider this circuit with two ideal diodes:

Let's analyze this circuit and find v_{D1}^i, i_{D1}^i, v_{D2}^i, and i_{D2}^i!

Remember, we must accomplish each of the five steps:

Step 1: *ASSUME* that both D1 and D2 are “on” (might as well!).

Step 2: *ENFORCE* the equalities $v_{D1}^i = 0 = v_{D2}^i$, by replacing each ideal diode with a short circuit.
Step 3: ANALYZE the resulting circuit, and find i_{D1}' and i_{D2}'.

Begin with KCL:

\[i = i_{D1}' + i_{D2}' \]

where \[i = \]

and \[i_{D2}' = \]

Therefore, \[i_{D1}' = \]
Step 4: Now we must **CHECK inequalities** to see if our assumptions are correct!

\[i_{D1}^i = \]

\[i_{D2}^i = \]

One assumption is therefore **INCORRECT**. We must proceed to step 5—change our assumptions and **completely** start again!

Q: Wait a second! We don’t have to **completely** start from the beginning, do we? After all, our assumption about diode D2 turned out to be **true**—so we **already** know that \(i_{D2}^i = \) and \(v_{D2}^i = 0 \), **right**?

A: **NO!** The solution for diode \(D_2 \) is dependent on the state of both diodes \(D_1 \) and \(D_2 \). If the assumption of just one diode turns out to be incorrect, then the solutions for all diodes are **wrong**!

So, let’s change our assumption and start all over again!
Step 1: Now **ASSUME** that D_1 is "off" and D_2 is "on".

Step 2: **ENFORCE** $i_{D1}^i = 0$ (D_1 open) and $v_{D2}^i = 0$ (D_2 short).

Step 3: **ANALYZE** resulting circuit, and find v_{D1}^i and i_{D2}^i.

Note $i = i_{D2}^i = \ldots$

and from KVL:

$$\therefore v_D^i = \ldots$$
4) CHECK our assumptions.

\[i_{D2}^i = \]

\[v_{D1}^i = \]

\[v_{D2}^i = 0 \quad i_{D2}^i = \]

\[v_{D1}^i = \quad i_{D1}^i = 0 \]

\[\therefore \text{Assumptions are correct! We are finished!} \]